Subscribe to RSS
DOI: 10.1055/a-1460-8566
Metallic Implants in MRI – Hazards and Imaging Artifacts
Metallische Implantate im MRT – Gefahren und Bildartefakte Supported by: Deutsche Forschungsgemeinschaft GRK 2154Supported by: European Regional Development Fund and the Zukunftsprogramm Wirtschaft of Schleswig-Holstein 122-09-053
Abstract
Background Magnetic resonance imaging (MRI) is an examination method for noninvasive soft tissue imaging without the use of ionizing radiation. Metallic implants, however, may pose a risk for the patient and often result in imaging artifacts. Due to the increasing number of implants, reducing these artifacts has become an important goal. In this review, we describe the risks associated with implants and provide the background on how metal-induced artifacts are formed. We review the literature on methods on how to reduce artifacts and summarize our findings.
Method The literature was searched using PubMed and the keywords “MRI metal artifact reduction”, “metallic implants” and “MRI artefacts/artifacts”.
Results and Conclusion The MRI compatibility of implants has to be evaluated individually. To reduce artifacts, two general approaches were found: a) parameter optimization in standard sequences (echo time, slice thickness, bandwidth) and b) specialized sequences, such as VAT, OMAR, WARP, SEMAC and MAVRIC. These methods reduced artifacts and improved image quality, albeit at the cost of a (sometimes significantly) prolonged scan time. New developments in accelerated imaging will likely shorten the scan time of these methods significantly, such that routine use may become feasible.
Key Points:
-
Metallic implants may pose a risk for patients and often cause artifacts.
-
Imaging artifacts can be reduced by parameter optimization or special sequences.
-
Metal artifacts are reduced with a lower TE, smaller voxel size, larger matrix, and higher bandwidth.
-
SPI, STIR, VAT, SEMAC, MAVRIC, and MAVRIC-SL are specialized MR sequences that can reduce artifacts further.
Citation Format
-
Peschke E, Ulloa P, Jansen O et al. Metallic Implants in MRI – Hazards and Imaging Artifacts. Fortschr Röntgenstr 2021; 193: 1285 – 1293
Zusammenfassung
Hintergrund Die Magnetresonanztomografie (MRT) ist eine Untersuchungsmethode für die nichtinvasive Bildgebung der Weichteile ohne die Verwendung von ionisierender Strahlung. Metallische Implantate können jedoch ein Risiko für den Patienten darstellen und führen häufig zu Bildgebungsartefakten. Aufgrund der steigenden Anzahl von Implantaten ist die Reduzierung dieser Artefakte zu einem wichtigen Ziel geworden. In dieser Übersichtsarbeit beschreiben wir die mit Implantaten und MRT verbundenen Risiken und liefern den Hintergrund, wie metallinduzierte Artefakte entstehen. Wir erläutern die gängigen Methoden zur Artefaktreduktion aus der Literatur und fassen diese zusammen.
Methoden Für diese Übersichtsarbeit wurde eine PubMed-Literatursuche mit den Stichworten „MRI metal artefact reduction“, „metallic implants“ und „MRI artefacts/artifacts“ durchgeführt.
Ergebnisse und Schlussfolgerung Die MRT-Verträglichkeit von Implantaten muss individuell bewertet werden. Zur Reduzierung von Artefakten wurden 2 generelle Ansätze gefunden: a) Parameteroptimierung in Standardsequenzen (Echozeit, Schichtdicke, Bandbreite) und b) spezialisierte Sequenzen wie VAT, OMAR, WARP, SEMAC und MAVRIC. Diese Methoden reduzierten Artefakte und verbesserten die Bildqualität, wenn auch auf Kosten einer (manchmal deutlich) verlängerten Scanzeit. Neue Entwicklungen in der beschleunigten Bildgebung werden die Scanzeit dieser Methoden wahrscheinlich deutlich verkürzen, sodass ein routinemäßiger Einsatz möglich werden könnte.
Kernaussagen:
-
Metallische Implantate können ein Risiko für Patienten darstellen und verursachen oft Artefakte.
-
Bildartefakte können durch Parameteroptimierung und spezielle Sequenzen reduziert werden.
-
Metallartefakte werden durch kürzere TE, kleinere Voxelgröße, größere Bildmatrix und größere Bandbreite reduziert.
-
SPI, STIR, VAT, SEMAC, MAVRIC und MAVRIC-SL sind spezialisierte MRT-Sequenzen, die Artefakte weiter reduzieren können.
Publication History
Received: 01 September 2020
Accepted: 17 March 2021
Article published online:
12 May 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Crues J, Bydder G. Frontiers in musculoskeletal imaging. Journal of Magnetic Resonance Imaging 2007; 25: 232-233
- 2 Kurtz S, Ong K, Lau E. et al Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030. JBJS 2007; 89: 780-785
- 3 Do T, Sutter R, Skornitzke S. et al CT and MRI Techniques for Imaging Around Orthopedic Hardware. Fortschr Röntgenstr 2018; 190: 31-41
- 4 Sammet S. Magnetic resonance safety. Abdom Radiol 2016; 41: 444-451
-
5 Promoting Safe Use of MRI Technology | ASTM Standardization News. Im Internet (Stand: 09.07.2020): https://www.astm.org/standardization-news/?q=features/promoting-safe-use-of-mri-technology-ma12.html
-
6 MRI Safety Home. Im Internet (Stand: 25.01.2021): http://mrisafety.com/
-
7 Magresource. MagResource. Im Internet (Stand: 25.01.2021): https://magresource.com/
-
8
Schaefers G.
How to interpret and apply MR implant labeling information correctly in practice 2011; 2084 words.
- 9 Schenck JF. Safety of Strong, Static Magnetic Fields. Journal of Magnetic Resonance Imaging 2000; 12: 2-19
- 10 Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 1996; 23: 815-850
- 11 Heilmaier C, Theysohn JM, Maderwald S. et al A large-scale study on subjective perception of discomfort during 7 and 1.5 T MRI examinations. Bioelectromagnetics 2011; 32: 610-619
- 12 Ham CL, Engels JM, van de Wiel GT. et al Peripheral nerve stimulation during MRI: effects of high gradient amplitudes and switching rates. J Magn Reson Imaging 1997; 7: 933-937
- 13 Tokue H, Tokue A, Tsushima Y. Unexpected magnetic resonance imaging burn injuries from jogging pants. Radiol Case Rep 2019; 14: 1348-1351
- 14 Haik J, Daniel S, Tessone A. et al MRI induced fourth-degree burn in an extremity, leading to amputation. Burns 2009; 35: 294-296
- 15 Mattei E, Censi F, Calcagnini G. et al Pacemaker and ICD oversensing induced by movements near the MRI scanner bore. Medical Physics 2016; 43: 6621-6631
- 16 Erhardt JB, Fuhrer E, Gruschke OG. et al Should patients with brain implants undergo MRI?. J Neural Eng 2018; 15: 041002
- 17 Nordbeck P, Ertl G, Ritter O. Magnetic resonance imaging safety in pacemaker and implantable cardioverter defibrillator patients: how far have we come?. Eur Heart J 2015; 36: 1505-1511
- 18 Baker KB, Tkach JA, Nyenhuis JA. et al Evaluation of specific absorption rate as a dosimeter of MRI-related implant heating. J Magn Reson Imaging 2004; 20: 315-320
-
19 Signals. Im Internet (Stand: 10.01.2021): http://www.ismrm.org/smrt/E-Signals/2016FEBRUARY/eSig_5_1_hot_2.htm
- 20 Skinner JG, Menichetti L, Flori A. et al Metabolic and Molecular Imaging with Hyperpolarised Tracers. Mol Imaging Biol 2018; 20: 902-918
- 21 Haacke EM, Xu Y, Cheng YCN. et al Susceptibility weighted imaging (SWI). Magn Reson Med 2004; 52: 612-618
- 22 Hargreaves BA, Worters PW, Pauly KB. et al Metal-Induced Artifacts in MRI. American Journal of Roentgenology 2011; 197: 547-555
- 23 Ariyanayagam T, Malcolm PN, Toms AP. Advances in Metal Artifact Reduction Techniques for Periprosthetic Soft Tissue Imaging. Semin Musculoskelet Radiol 2015; 19: 328-334
- 24 Jungmann PM, Agten CA, Pfirrmann CW. et al Advances in MRI around metal. J Magn Reson Imaging 2017; 46: 972-991
- 25 Khodarahmi I, Isaac A, Fishman EK. et al Metal About the Hip and Artifact Reduction Techniques: From Basic Concepts to Advanced Imaging. Semin Musculoskelet Radiol 2019; 23: e68-e81
- 26 Harris CA, White LM. Metal Artifact Reduction in Musculoskeletal Magnetic Resonance Imaging. Orthopedic Clinics of North America 2006; 37: 349-359
- 27 Choi SJ, Koch KM, Hargreaves BA. et al Metal Artifact Reduction With MAVRIC SL at 3-T MRI in Patients With Hip Arthroplasty. American Journal of Roentgenology 2014; 204: 140-147
- 28 Guermazi A, Miaux Y, Zaim S. et al Metallic Artefacts in MR Imaging: Effects of Main Field Orientation and Strength. Clinical Radiology 2003; 58: 322-328
- 29 Tartaglino LM, Flanders AE, Vinitski S. et al Metallic artifacts on MR images of the postoperative spine: reduction with fast spin-echo techniques. Radiology 1994; 190: 565-569
- 30 Thompson RM, Fowler E, Culo B. et al MRI safety and imaging artifacts evaluated for a cannulated screw used for guided growth surgery. Magnetic Resonance Imaging 2020; 66: 219-225
- 31 Ganapathi M, Joseph G, Savage R. et al MRI Susceptibility Artefacts Related to Scaphoid Screws: the Effect of Screw Type, Screw Orientation and Imaging Parameters. Journal of Hand Surgery 2002; 27: 165-170
- 32 Lee MJ, Kim S, Lee SA. et al Overcoming Artifacts from Metallic Orthopedic Implants at High-Field-Strength MR Imaging and Multi-detector CT. RadioGraphics 2007; 27: 791-803
- 33 Chiba Y, Murakami H, Sasaki M. et al Quantification of metal‐induced susceptibility artifacts associated with ultrahigh‐field magnetic resonance imaging of spinal implants. JOR Spine 2019; 2
- 34 Sutter R, Dietrich T. Reduktion von Metallartefakten in der muskuloskelettalen Bildgebung. Radiologie up2date 2016; 16: 127-144
- 35 Ladd ME, Erhart P, Debatin JF. et al Biopsy needle susceptibility artifacts. Magnetic Resonance in Medicine 1996; 36: 646-651
-
36
Faulkner W.
Managing Metallic Artifacts in MRI. Im Internet: http://www.medtronic.me/content/dam/medtronic-com/ca-en/hcp/documents/MRI/Managing%20Metallic%20Artifact%20White%20Paper%20201604693EC.pdf
- 37 Talbot BS, Weinberg EP. MR Imaging with Metal-suppression Sequences for Evaluation of Total Joint Arthroplasty. RadioGraphics 2016; 36: 209-225
-
38
Stumpf K,
van Gorp S,
Strom A.
et al
Multi-sequence comparison of metal artifact reduction capabilities for dental materials. In: Proceedings of the Joint Annual Meeting of ISMRM and ESMRMB. Paris 2018
- 39 Hövener JB, Zwick S, Leupold J. et al Dental MRI: imaging of soft and solid components without ionizing radiation. J Magn Reson Imaging 2012; 36: 841-846
- 40 Koch KM, Hargreaves BA, Pauly KB. et al Magnetic resonance imaging near metal implants. J Magn Reson Imaging 2010; 32: 773-787
- 41 Jiang M, He C, Feng J. et al Magnetic resonance imaging parameter optimizations for diagnosis of periprosthetic infection and tumor recurrence in artificial joint replacement patients. Sci Rep 2016; 6: 36995
- 42 Viano AM, Gronemeyer SA, Haliloglu M. et al Improved MR imaging for patients with metallic implants. Magnetic Resonance Imaging 2000; 18: 287-295
- 43 Kumar NM, de Cesar Netto C, Schon LC. et al Metal Artifact Reduction Magnetic Resonance Imaging Around Arthroplasty Implants: The Negative Effect of Long Echo Trains on the Implant-Related Artifact. Investigative Radiology 2017; 52: 310-316
- 44 de Cesar Netto C, Fonseca LF, Fritz B. et al Metal artifact reduction MRI of total ankle arthroplasty implants. Eur Radiol 2018; 28: 2216-2227
- 45 Ramos-Cabrer P, van Duynhoven JPM, Van der Toorn A. et al MRI of hip prostheses using single-point methods: In vitro studies towards the artifact-free imaging of individuals with metal implants. Magnetic Resonance Imaging 2004; 22: 1097-1103
- 46 Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting: Total inhomogeneity correction including chemical shift. Med Phys 1988; 15: 7-11
- 47 Reichert M, Ai T, Morelli JN. et al Metal artefact reduction in MRI at both 1.5 and 3.0 T using slice encoding for metal artefact correction and view angle tilting. BJR 2015; 88: 20140601
- 48 Olsen RV, Munk PL, Lee MJ. et al Metal Artifact Reduction Sequence: Early Clinical Applications. RadioGraphics 2000; 20: 699-712
- 49 Toms AP, Smith-Bateman C, Malcolm PN. et al Optimization of metal artefact reduction (MAR) sequences for MRI of total hip prostheses. Clinical Radiology 2010; 65: 447-452
- 50 Lu W, Pauly KB, Gold GE. et al SEMAC: Slice encoding for metal artifact correction in MRI. Magn Reson Med 2009; 62: 66-76
- 51 Deligianni X, Bieri O, Elke R. et al Optimization of Scan Time in MRI for Total Hip Prostheses: SEMAC Tailoring for Prosthetic Implants Containing Different Types of Metals. Rofo 2015; 187: 1116-1122
- 52 Koch KM, Lorbiecki JE, Hinks RS. et al A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med 2009; 61: 381-390
- 53 Koch KM, Brau AC, Chen W. et al Imaging near metal with a MAVRIC-SEMAC hybrid. Magnetic Resonance in Medicine 2011; 65: 71-82
-
54 O-MAR | Klinische MR-Anwendung | Philips Healthcare. Philips. Im Internet (Stand: 22.07.2020): https://www.philips.de/healthcare/product/HCNMRB815/O-MAR-MR-Software
-
55 WARP. Im Internet (Stand: 22.07.2020): https://www.siemens-healthineers.com/de/medical-imaging/magnetic-resonance-imaging/options-and-upgrades/clinical-applications/syngo-warp/features
-
56 O-MAR XD | Klinische MR-Anwendung | Philips Healthcare. Philips. Im Internet (Stand: 22.07.2020): https://www.philips.de/healthcare/product/HCNMRB816A/O-MAR-XD-MR-Software
-
57 Advanced WARP. Im Internet (Stand: 22.07.2020): https://www.siemens-healthineers.com/de/medical-imaging/magnetic-resonance-imaging/options-and-upgrades/clinical-applications/advanced-warp/features
- 58 Duong STM, Phung SL, Bouzerdoum A. et al An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images. Magnetic Resonance Imaging 2020; 71: 1-10
- 59 Kwon K, Kim D, Kim B. et al Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients. Magnetic Resonance in Medicine 2020; 83: 124-138