RSS-Feed abonnieren
DOI: 10.1055/a-1464-0953
Update Mammakarzinom 2021 Teil 1 – Prävention und frühe Krankheitsstadien
Artikel in mehreren Sprachen: English | deutschZusammenfassung
In dieser Übersichtsarbeit werden nicht nur die neuesten Erkenntnisse zur Prävention, sondern auch die aktuellen Arbeiten zur Behandlung von Mammakarzinompatientinnen im frühen Krankheitsstadium zusammengefasst. In den letzten Jahren haben sich die Hinweise über hoch-penetrante und mittelgradig penetrante Risikogene für ein Mammakarzinom verdichtet. Nun konnte in einem großen internationalen Konsortium die Antwort auf die Frage nach der Wertigkeit der sogenannten Panelgene weiterentwickelt werden. Des weiteren sind auch die Daten zur Therapieselektion in Bezug auf endokrine Wirksamkeit und die Entscheidung für oder gegen eine Chemotherapie deutlich weiterentwickelt worden. Ebenso gibt es neue Daten zum adjuvanten Einsatz von CDK4/6-(Cyclin-dependent-kinase-4/6-)Inhibitoren, die in der 1. Therapielinie für Patientinnen mit metastasiertem HER2-negativem, hormonrezeptorpositiven (HR+) Mammakarzinom zum Therapiestandard gehören. Bei anderen Therapien wie den Immuncheckpoint-Inhibitoren, welche erfolgreich in der neoadjuvanten Therapiesituation bei Patientinnen mit einem triple-negativen Mammakarzinom (TNBC) die Rate an pathologischen Komplettremissionen (pCR) verbessern konnten, wächst das Verständnis für Lebensqualität und Nebenwirkungen. Dies ist von besonderer Bedeutung in einer Situation, in der Patientinnen potenziell auch ohne eine solche Therapie geheilt werden könnten.
Schlüsselwörter
frühes Mammakarzinom - Prävention - Therapie - Prognose - Immuntherapie - digitale MedizinPublikationsverlauf
Eingereicht: 17. März 2021
Angenommen nach Revision: 23. März 2021
Artikel online veröffentlicht:
03. Mai 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1 Ditsch N, Untch M, Kolberg-Liedtke C. et al. AGO Recommendations for the Diagnosis and Treatment of Patients with Locally Advanced and Metastatic Breast Cancer: Update 2020. Breast Care (Basel) 2020; 15: 294-309
- 2 Ditsch N, Untch M, Thill M. et al. AGO Recommendations for the Diagnosis and Treatment of Patients with Early Breast Cancer: Update 2019. Breast Care (Basel) 2019; 14: 224-245
- 3 Huober J, Schneeweiss A, Hartkopf AD. et al. Update Breast Cancer 2020 Part 3 – Early Breast Cancer. Geburtshilfe Frauenheilkd 2020; 80: 1105-1114
- 4 Lüftner D, Schneeweiss A, Hartkopf AD. et al. Update Breast Cancer 2020 Part 2 – Advanced Breast Cancer: New Treatments and Implementation of Therapies with Companion Diagnostics. Geburtshilfe Frauenheilkd 2020; 80: 391-398
- 5 Schneeweiss A, Hartkopf AD, Müller V. et al. Update Breast Cancer 2020 Part 1 – Early Breast Cancer: Consolidation of Knowledge About Known Therapies. Geburtshilfe Frauenheilkd 2020; 80: 277-287
- 6 Tesch H, Müller V, Wöckel A. et al. Update Breast Cancer 2020 Part 4 – Advanced Breast Cancer. Geburtshilfe Frauenheilkd 2020; 80: 1115-1122
- 7 Hartkopf AD, Müller V, Wöckel A. et al. Update Breast Cancer 2019 Part 1 – Implementation of Study Results of Novel Study Designs in Clinical Practice in Patients with Early Breast Cancer. Geburtshilfe Frauenheilkd 2019; 79: 256-267
- 8 Schütz F, Fasching PA, Welslau M. et al. Update Breast Cancer 2019 Part 4 – Diagnostic and Therapeutic Challenges of New, Personalised Therapies for Patients with Early Breast Cancer. Geburtshilfe Frauenheilkd 2019; 79: 1079-1089
- 9 Wunderle M, Olmes G, Nabieva N. et al. Risk, Prediction and Prevention of Hereditary Breast Cancer – Large-Scale Genomic Studies in Times of Big and Smart Data. Geburtshilfe Frauenheilkd 2018; 78: 481-492
- 10 Fachal L, Aschard H, Beesley J. et al. Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat Genet 2020; 52: 56-73
- 11 Wu L, Shi W, Long J. et al. A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nat Genet 2018; 50: 968-978
- 12 Milne RL, Kuchenbaecker KB, Michailidou K. et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet 2017; 49: 1767-1778
- 13 Michailidou K, Lindström S, Dennis J. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 2017; 551: 92-94
- 14 Day FR, Thompson DJ, Helgason H. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat Genet 2017; 49: 834-841
- 15 Michailidou K, Beesley J, Lindstrom S. et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet 2015; 47: 373-380
- 16 Day FR, Ruth KS, Thompson DJ. et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat Genet 2015; 47: 1294-1303
- 17 Pharoah PD, Tsai YY, Ramus SJ. et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 2013; 45: 362-370 370e1–370e2
- 18 Michailidou K, Hall P, Gonzalez-Neira A. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 2013; 45: 353-361 361e1–361e2
- 19 Garcia-Closas M, Couch FJ, Lindstrom S. et al. Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 2013; 45: 392-398 398e1–398e2
- 20 Bojesen SE, Pooley KA, Johnatty SE. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 2013; 45: 371-384 384e1–384e2
- 21 Ghoussaini M, Fletcher O, Michailidou K. et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet 2012; 44: 312-318
- 22 Haiman CA, Chen GK, Vachon CM. et al. A common variant at the TERT-CLPTM1 L locus is associated with estrogen receptor-negative breast cancer. Nat Genet 2011; 43: 1210-1214
- 23 Antoniou AC, Wang X, Fredericksen ZS. et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet 2010; 42: 885-892
- 24 Ghoussaini M, French JD, Michailidou K. et al. Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation. Am J Hum Genet 2016; 99: 903-911
- 25 Couch FJ, Kuchenbaecker KB, Michailidou K. et al. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nat Commun 2016; 7: 11375
- 26 Purrington KS, Slager S, Eccles D. et al. Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis 2014; 35: 1012-1019
- 27 Stevens KN, Fredericksen Z, Vachon CM. et al. 19p13.1 is a triple-negative-specific breast cancer susceptibility locus. Cancer Res 2012; 72: 1795-1803
- 28 Kolberg HC, Schneeweiss A, Fehm TN. et al. Update Breast Cancer 2019 Part 3 – Current Developments in Early Breast Cancer: Review and Critical Assessment by an International Expert Panel. Geburtshilfe Frauenheilkd 2019; 79: 470-482
- 29 Shimelis H, LaDuca H, Hu C. et al. Triple-Negative Breast Cancer Risk Genes Identified by Multigene Hereditary Cancer Panel Testing. J Natl Cancer Inst 2018; 110: 855-862
- 30 Couch FJ, Shimelis H, Hu C. et al. Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncol 2017; 3: 1190-1196
- 31 Breast Cancer Association Consortium. Dorling L, Carvalho S, Allen J. et al. Breast Cancer Risk Genes – Association Analysis in More than 113,000 Women. N Engl J Med 2021; 384: 428-439
- 32 Hu C, Hart SN, Gnanaolivu R. et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N Engl J Med 2021; 384: 440-451
- 33 Loibl S, Weber KE, Timms KM. et al. Survival analysis of carboplatin added to an anthracycline/taxane-based neoadjuvant chemotherapy and HRD score as predictor of response – final results from GeparSixto. Ann Oncol 2018; 29: 2341-2347
- 34 Fasching PA, Jackisch C, Rhiem K. et al. GeparOLA: A randomized phase II trial to assess the efficacy of paclitaxel and olaparib in comparison to paclitaxel/carboplatin followed by epirubicin/cyclophosphamide as neoadjuvant chemotherapy in patients (pts) with HER2-negative early breast cancer (BC) and homologous recombination deficiency (HRD). J Clin Oncol 2019; 37(15_suppl): 506
- 35 Fasching PA, Loibl S, Hu C. et al. BRCA1/2 Mutations and Bevacizumab in the Neoadjuvant Treatment of Breast Cancer: Response and Prognosis Results in Patients With Triple-Negative Breast Cancer From the GeparQuinto Study. J Clin Oncol 2018; 36: 2281-2287
- 36 Hahnen E, Lederer B, Hauke J. et al. Germline Mutation Status, Pathological Complete Response, and Disease-Free Survival in Triple-Negative Breast Cancer: Secondary Analysis of the GeparSixto Randomized Clinical Trial. JAMA Oncol 2017; 3: 1378-1385
- 37 Wunderle M, Gass P, Häberle L. et al. BRCA mutations and their influence on pathological complete response and prognosis in a clinical cohort of neoadjuvantly treated breast cancer patients. Breast Cancer Res Treat 2018; 171: 85-94
- 38 Litton JK, Scoggins ME, Hess KR. et al. Neoadjuvant Talazoparib for Patients With Operable Breast Cancer With a Germline BRCA Pathogenic Variant. J Clin Oncol 2020; 38: 388-394
- 39 Litton JK, Rugo HS, Ettl J. et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N Engl J Med 2018; 379: 753-763
- 40 Robson M, Im SA, Senkus E. et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N Engl J Med 2017; 377: 523-533
- 41 Turner NC, Telli ML, Rugo HS. et al. A Phase II Study of Talazoparib after Platinum or Cytotoxic Nonplatinum Regimens in Patients with Advanced Breast Cancer and Germline BRCA1/2 Mutations (ABRAZO). Clin Cancer Res 2019; 25: 2717-2724
- 42 Tung NM, Robson ME, Ventz S. et al. TBCRC048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes. J Clin Oncol 2020; 38: 4274-4282
- 43 Iyengar NM, Arthur R, Manson JE. et al. Association of Body Fat and Risk of Breast Cancer in Postmenopausal Women With Normal Body Mass Index: A Secondary Analysis of a Randomized Clinical Trial and Observational Study. JAMA Oncol 2019; 5: 155-163
- 44 Premenopausal Breast Cancer Collaborative Group. Schoemaker MJ, Nichols HB, Wright LB. et al. Association of Body Mass Index and Age With Subsequent Breast Cancer Risk in Premenopausal Women. JAMA Oncol 2018; 4: e181771
- 45 Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ. et al. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J Clin 2017; 67: 378-397
- 46 Torres-de la Roche LA, Steljes I, Janni W. et al. The Association between Obesity and Premenopausal Breast Cancer According to Intrinsic Subtypes – a Systematic Review. Geburtshilfe Frauenheilkd 2020; 80: 601-610
- 47 Widschwendter P, Friedl TW, Schwentner L. et al. The influence of obesity on survival in early, high-risk breast cancer: results from the randomized SUCCESS A trial. Breast Cancer Res 2015; 17: 129
- 48 Debras C, Chazelas E, Srour B. et al. Glycemic index, glycemic load and breast cancer risk: Results from the prospective NutriNet-Santé cohort. San Antonio Breast Cancer Symposium 2020; 2020: GS2-07 Accessed March 16, 2021 at: https://www.abstractsonline.com/pp8/%23!/9223/presentation/583
- 49 Gopalakrishnan V, Spencer CN, Nezi L. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018; 359: 97-103
- 50 Robinson T, Edmunds G, Hayes B. et al. Exploring the causal role of the human gut microbiome in breast cancer risk using mendelian randomization. San Antonio Breast Cancer Symposium 2020; 2020: GS2-06 Accessed March 16, 2021 at: https://www.abstractsonline.com/pp8/%23!/9223/presentation/582
- 51 Zhang H, Ahearn TU, Lecarpentier J. et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat Genet 2020; 52: 572-581
- 52 Hughes DA, Bacigalupe R, Wang J. et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat Microbiol 2020; 5: 1079-1087
- 53 Cortazar P, Zhang L, Untch M. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 2014; 384: 164-172
- 54 Untch M, Fasching PA, Konecny GE. et al. Pathologic complete response after neoadjuvant chemotherapy plus trastuzumab predicts favorable survival in human epidermal growth factor receptor 2-overexpressing breast cancer: results from the TECHNO trial of the AGO and GBG study groups. J Clin Oncol 2011; 29: 3351-3357
- 55 Fasching PA, Heusinger K, Haeberle L. et al. Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer 2011; 11: 486
- 56 Huang M, OʼShaughnessy J, Zhao J. et al. Evaluation of Pathologic Complete Response as a Surrogate for Long-Term Survival Outcomes in Triple-Negative Breast Cancer. J Natl Compr Canc Netw 2020; 18: 1096-1104
- 57 Huang M, OʼShaughnessy J, Zhao J. et al. Association of Pathologic Complete Response with Long-Term Survival Outcomes in Triple-Negative Breast Cancer: A Meta-Analysis. Cancer Res 2020; 80: 5427-5434
- 58 Smith I, Robertson J, Kilburn L. et al. Long-term outcome and prognostic value of Ki67 after perioperative endocrine therapy in postmenopausal women with hormone-sensitive early breast cancer (POETIC): an open-label, multicentre, parallel-group, randomised, phase 3 trial. Lancet Oncol 2020; 21: 1443-1454
- 59 Ma CX, Suman V, Leitchet AM. et al. Neoadjuvant chemotherapy (NCT) response in postmenopausal women with clinical stage II or III estrogen receptor positive (ER+) and HER2 negative (HER2-) breast cancer (BC) resistant to endocrine therapy (ET) in the ALTERNATE trial (Alliance A011106). San Antonio Breast Cancer Symposium 2020; 2020: GS4-05 Accessed March 16, 2021 at: https://www.abstractsonline.com/pp8/%23!/9223/presentation/683
- 60 Kuemmel S, Gluz O, Nitz U. et al. Neoadjuvant nab-paclitaxel weekly versus dose-dense paclitaxel followed by dose-dense EC in high risk HR+/HER2- early BC by: results from the neoadjuvant part of ADAPT HR+/HER2- trial. San Antonio Breast Cancer Symposium 2020; 2020: GS4-03 Accessed March 16 2021 at: https://www.abstractsonline.com/pp8/%23!/9223/presentation/681
- 61 Untch M, Jackisch C, Schneeweiss A. et al. NAB-Paclitaxel Improves Disease-Free Survival in Early Breast Cancer: GBG 69-GeparSepto. J Clin Oncol 2019; 37: 2226-2234
- 62 Untch M, Jackisch C, Schneeweiss A. et al. Nab-paclitaxel versus solvent-based paclitaxel in neoadjuvant chemotherapy for early breast cancer (GeparSepto-GBG 69): a randomised, phase 3 trial. Lancet Oncol 2016; 17: 345-356
- 63 Merck, FDA. Pembrolizumab: Combined FDA and Applicant ODAC Briefing Document for the Oncologic Drugs Advisory Committee (ODAC) Meeting on February 9, 2021. Accessed February 20, 2021 at: https://www.fda.gov/media/145654/download
- 64 Harbeck N, Zhang H, Barrios CH. et al. IMpassion031: Results from a phase III study of neoadjuvant (neoadj) atezolizumab + chemotherapy in early triple-negative breast cancer (TNBC). Ann Oncol 2020; 31 (Suppl. 04) S1142-S1215 doi:10.1016/annonc/annonc325
- 65 Schmid P, Cortes J, Pusztai L. et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N Engl J Med 2020; 382: 810-821
- 66 Gianni L, Huang C-S, Egle D. et al. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple negative, early high-risk and locally advanced breast cancer. NeoTRIPaPDL1 Michelangelo randomized study. San Antonio Breast Cancer Symposium 2019; 2019: GS3-04 Accessed March 16 2021 at: https://www.abstractsonline.com/pp8/%23!/7946/presentation/1911
- 67 Mittendorf EA, Harbeck N, Zhang H. et al. Patient-reported outcomes (PROs) from the Ph 3 IMpassion031 trial of neoadjuvant (NA) atezolizumab + chemo in early triple-negative breast cancer (eTNBC). San Antonio Breast Cancer Symposium 2020; 2020: GS3-02 Accessed March 16 2021 at: https://www.abstractsonline.com/pp8/%23!/9223/presentation/1726
- 68 Bergquist JR, Murphy BL, Storlie CB. et al. Incorporation of Treatment Response, Tumor Grade and Receptor Status Improves Staging Quality in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Ann Surg Oncol 2017; 24: 3510-3517
- 69 Jeruss JS, Mittendorf EA, Tucker SL. et al. Combined use of clinical and pathologic staging variables to define outcomes for breast cancer patients treated with neoadjuvant therapy. J Clin Oncol 2008; 26: 246-252
- 70 Mittendorf EA, Jeruss JS, Tucker SL. et al. Validation of a novel staging system for disease-specific survival in patients with breast cancer treated with neoadjuvant chemotherapy. J Clin Oncol 2011; 29: 1956-1962
- 71 Loibl S, Marmé F, Martin M et al., Phase III study of palbociclib combined with endocrine therapy (ET) in patients with hormone-receptor-positive (HR+), HER2-negative primary breast cancerand with high relapse risk after neoadjuvant chemotherapy (NACT): First results from PENELOPE-B. San Antonio Breast Cancer Symposium 2020; 2020: GS1-02 Accessed March 16 2021 at: https://www.abstractsonline.com/pp8/%23!/9223/presentation/666
- 72 Mittendorf EA, Vila J, Tucker SL. et al. The Neo-Bioscore Update for Staging Breast Cancer Treated With Neoadjuvant Chemotherapy: Incorporation of Prognostic Biologic Factors Into Staging After Treatment. JAMA Oncol 2016; 2: 929-936
- 73 Symmans WF, Peintinger F, Hatzis C. et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 2007; 25: 4414-4422
- 74 Sinn HP, Schmid H, Junkermann H. et al. Histological Regression of Breast-Cancer After Primary (Neoadjuvant) Chemotherapy. Geburtshilfe Frauenheilkd 1994; 54: 552-558
- 75 von Minckwitz G, Untch M, Blohmer JU. et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012; 30: 1796-1804
- 76 van der Noordaa MEM, Yau C, Shad S. et al. Assessing prognosis after neoadjuvant therapy: A comparison between anatomic ypAJCC staging, Residual Cancer Burden Class and Neo-Bioscore. San Antonio Breast Cancer Symposium 2020; 2020: GS4-07.. Accessed March 16 2021 at: https://www.abstractsonline.com/pp8/%23!/9223/presentation/684
- 77 McDonald BR, Contente-Cuomo T, Sammut SJ. et al. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci Transl Med 2019; 11: eaax7392
- 78 Chan A, Delaloge S, Holmes FA. et al. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2016; 17: 367-377
- 79 Martin M, Holmes FA, Ejlertsen B. et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2017; 18: 1688-1700
- 80 Chan A, Moy B, Mansi J. et al. Final Efficacy Results of Neratinib in HER2-positive Hormone Receptor-positive Early-stage Breast Cancer From the Phase III ExteNET Trial. Clin Breast Cancer 2021; 21: 80-91.e7
- 81 Johnston SRD, Harbeck N, Hegg R. et al. Abemaciclib Combined With Endocrine Therapy for the Adjuvant Treatment of HR+, HER2-, Node-Positive, High-Risk, Early Breast Cancer (monarchE). J Clin Oncol 2020; 38: 3987-3998
- 82 OʼShaughnessy JA, Johnston S, Harbeck N. et al. Primary outcome analysis of invasive disease-free survival for monarchE: abemaciclib combined with adjuvant endocrine therapy for high risk early breast cancer. San Antonio Breast Cancer Symposium 2020; 2020: GS1-01 Accessed March 16 2021 at: https://www.abstractsonline.com/pp8/%23!/9223/presentation/664
- 83 Harbeck N, Johnston S, Fasching P. et al. High Ki-67 as a biomarker for identifying patients with high risk early breast cancer treated in monarchE. San Antonio Breast Cancer Symposium 2020; 2020: PD2-01 Accessed March 6 2021 at: https://www.abstractsonline.com/pp8/%23!/9223/presentation/781
- 84 Sparano JA, Gray RJ, Makower DF. et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N Engl J Med 2018; 379: 111-121
- 85 Kalinsky K, Barlow WE, Meric-Bernstam F. et al. First results from a phase III randomized clinical trial of standard adjuvant endocrine therapy (ET) ± chemotherapy (CT) in patients (pts) with 1–3 positive nodes, hormone receptor-positive (HR+) and HER2-negative (HER2-) breast cancer (BC) with recurrence score (RS) < 25: SWOG S1007 (RxPonder). San Antonio Breast Cancer Symposium 2020; 2020: GS3-00 Accessed March 16, 2021 at: https://www.abstractsonline.com/pp8/%23!/9223/presentation/2794
- 86 Kuhlen R, Schmithausen D, Winklmair C. et al. Effekte von COVID-19-Pandemie und Lockdown auf die Versorgung von Krankenhauspatienten. Dtsch Arztebl Int 2020; 117: 488-489
- 87 von Lilienfeld-Toal M, Giesen N, Greinix H, Hein A, Hirsch HH, Na I-K, Sandherr M, Schanz U, Vehreschild JJ, Wörmann B. Coronavirus-Infektion (COVID-19) bei Patienten mit Blut- und Krebserkrankungen. 2021, Onkopedia Leitlinien – DGHO Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. Accessed March 16, 2021 at: http://www.onkopedia.com/de/onkopedia/guidelines/coronavirus-infektion-covid-19-bei-patienten-mit-blut-und-krebserkrankungen/@@guideline/html/index.html
- 88 de Azambuja E, Trapani D, Loibl S. et al. ESMO Management and treatment adapted recommendations in the COVID-19 era: Breast Cancer. ESMO Open 2020; 5 (Suppl. 03) e000793
- 89 Curigliano G, Cardoso MJ, Poortmans P. et al. Recommendations for triage, prioritization and treatment of breast cancer patients during the COVID-19 pandemic. Breast 2020; 52: 8-16
- 90 American Association of Clinical Oncology. ASCO Special Report: A Guide to Cancer Care Delivery During the COVID-19 Pandemic. 2020 Accessed March 16, 2021 at: https://www.asco.org/sites/new-www.asco.org/files/content-files/2020-ASCO-Guide-Cancer-COVID19.pdf
- 91 Dowsett M, Ellis MJ, Dixon JM. et al. Evidence-based guidelines for managing patients with primary ER+ HER2- breast cancer deferred from surgery due to the COVID-19 pandemic. NPJ Breast Cancer 2020; 6: 21
- 92 Saini KS, Tagliamento M, Lambertini M. et al. Mortality in patients with cancer and coronavirus disease 2019: A systematic review and pooled analysis of 52 studies. Eur J Cancer 2020; 139: 43-50
- 93 Desai A, Gupta R, Advani S. et al. Mortality in hospitalized patients with cancer and coronavirus disease 2019: A systematic review and meta-analysis of cohort studies. Cancer 2020;
- 94 Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi 2020; 41: 145-151
- 95 Kuderer NM, Choueiri TK, Shah DP. et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet 2020; 395: 1907-1918
- 96 Lee JY, Kim HA, Huh K. et al. Risk Factors for Mortality and Respiratory Support in Elderly Patients Hospitalized with COVID-19 in Korea. J Korean Med Sci 2020; 35: e223
- 97 Bersanelli M. Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors. Immunotherapy 2020; 12: 269-273