Synthesis 2021; 53(17): 3094-3100 DOI: 10.1055/a-1467-2432
special topic
Bond Activation – in Honor of Prof. Shinji Murai
Synthesis of Dibenzyls by Nickel-Catalyzed Homocoupling of Benzyl Alcohols
Feng-Feng Pan
a
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. of China
b
College of Chemical Engineering and Technology, Tianshui Normal University, 60 South Xihe Road, Tianshui, 741001, P. R. of China
,
Peng Guo
a
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. of China
,
Xiaochuang Huang
c
Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., 168 West Chaoyang Road, Huai’An, Jiangsu, 223003, P. R. of China
,
a
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. of China
› Author Affiliations
Abstract
Dibenzyls are essential building blocks that are widely used in organic synthesis, and they are typically prepared by the homocoupling of halides, organometallics, and ethers. Herein, we report an approach to this class of compounds using alcohols, which are more stable and readily available. The reaction proceeds via nickel-catalyzed and dimethyl oxalate assisted dynamic kinetic homocoupling of benzyl alcohols. Both primary and secondary alcohols are tolerated.
Key words homocoupling - nickel - dibenzyls - alcohols - synthetic methodology
References
1a
Barrett TN,
Braddock DC,
Monta A,
Webb MR,
White AJ. P.
J. Nat. Prod. 2011; 74: 1980
1b
Zhu L.-J,
Wang M.-Q,
Qin Y,
Wang M.-N,
Zhang G.-Q,
Niu L.-T,
Chen J.-B,
Zhang X,
Yao X.-S.
J. Asian Nat. Prod. Res. 2020; in press
2a
Iwasa E,
Hamashima Y,
Fujishiro S,
Hashizume D,
Sodeoka M.
Tetrahedron 2011; 67: 6587
2b
Duan X.-J,
Li X.-M,
Wang B.-G.
J. Nat. Prod. 2007; 70: 1210
3a
Goldup SM,
Leigh DA,
McBurney RT,
McGonigal PR,
Plant A.
Chem. Sci. 2010; 1: 383
3b
Prinsell MR,
Everson DA,
Weix DJ.
Chem. Commun. 2010; 46: 5743
3c
Mboyi CD,
Gaillard S,
Mabaye MD,
Pannetier N,
Renaud J.-L.
Tetrahedron 2013; 69: 4875
3d
Khan S,
Ghatak A,
Bhar S.
Tetrahedron Lett. 2015; 56: 2480
3e
Liu Y,
Xiao S,
Qi Y,
Du F.
Chem. Asian J. 2017; 12: 673
4
Cai Y,
Qian X,
Gosmini C.
Adv. Synth. Catal. 2016; 358: 2427
5
Barrero AF,
Herrador MM,
Quílez del Moral JF,
Arteaga P,
Akssira M,
El Hanbali F,
Arteaga JF,
Diéguez HR,
Sánchez EM.
J. Org. Chem. 2007; 72: 2251
6
Liu Y,
Zhang D,
Xiao S,
Qi Y,
Liu S.
Asian J. Org. Chem. 2019; 8: 858
7
Xu X,
Cheng D,
Pei W.
J. Org. Chem. 2006; 71: 6637
8
Sato K,
Inoue Y,
Mori T,
Sakaue A,
Tarui A,
Omote M,
Kumadaki I,
Ando A.
Org. Lett. 2014; 16: 3756
9a
Lei A,
Zhang X.
Org. Lett. 2002; 4: 2285
9b
Cahiez G,
Moyeux A,
Buendia J,
Duplais C.
J. Am. Chem. Soc. 2007; 129: 13788
9c
Zhou Z,
Xue W.
J. Organomet. Chem. 2009; 694: 599
9d
Zhu Y,
Xiong T,
Han W,
Shi Y.
Org. Lett. 2014; 16: 6144
10
Cao Z.-C,
Shi Z.-J.
J. Am. Chem. Soc. 2017; 139: 6546
11a
Diederich F,
Stang PJ.
Metal-Catalyzed Cross-Coupling Reactions
. Wiley-VCH; Weinheim: 1998
11b
Kuwano R.
Synthesis 2009; 7: 1049
11c
Su B,
Cao Z.-C,
Shi Z.-J.
Acc. Chem. Res. 2015; 48: 886
11d
Tobisu M,
Chatani N.
Acc. Chem. Res. 2015; 48: 1717
11e
Tollefson EJ,
Hanna LE,
Jarvo ER.
Acc. Chem. Res. 2015; 48: 2344
12a A review:
Pang X,
Peng X,
Shu X.-Z.
Synthesis 2020; 52: 3751
Selected examples:
12b
Qian X,
Auffrant A,
Felouat A,
Gosmini C.
Angew. Chem. Int. Ed. 2011; 50: 10402
12c
Ackerman LK. G,
Anka-Lufford LL,
Naodovic M,
Weix DJ.
Chem. Sci. 2015; 6: 1115
12d
Tollefson EJ,
Erickson LW,
Jarvo ER.
J. Am. Chem. Soc. 2015; 137: 9760
12e
Yan X.-B,
Li C.-L,
Jin W.-J,
Guo P,
Shu X.-Z.
Chem. Sci. 2018; 9: 4529
12f
Ye Y,
Chen H,
Sessler JL,
Gong H.
J. Am. Chem. Soc. 2019; 141: 820
Metal-catalyzed hydrogen-borrowing reactions:
13a
Yang Q,
Wang Q,
Yu Z.
Chem. Soc. Rev. 2015; 44: 2305
13b
Corma A,
Navas J,
Sabater MJ.
Chem. Rev. 2018; 118: 1410
Ru-catalyzed dehydroxylative reactions:
14a
Lee D.-H,
Kwon K.-H,
Yi CS.
Science 2011; 333: 1613
14b
Lee D.-H,
Kwon K.-H,
Yi CS.
J. Am. Chem. Soc. 2012; 134: 7325
Transition-metal-catalyzed functionalization of allylic alcohols:
15a
Butta NA,
Zhang W.
Chem. Soc. Rev. 2015; 44: 7929
15b
Yang B,
Wang Z.-X.
J. Org. Chem. 2017; 82: 4542
15c
Jia X.-G,
Guo P,
Duan J.-C,
Shu X.-Z.
Chem. Sci. 2018; 9: 640
16 Metal-catalyzed coupling using strong basic nucleophiles:
Yu D.-G,
Wang X,
Zhu R.-Y,
Luo S,
Zhang X.-B,
Wang B.-Q,
Wang L,
Shi Z.-J.
J. Am. Chem. Soc. 2012; 134: 14638
Ti-catalyzed radical dehydroxylative reaction:
17a
Suga T,
Ukaji Y.
Org. Lett. 2018; 20: 7846
17b
Xie H,
Guo J,
Wang Y.-Q,
Wang K,
Guo P,
Su P.-F,
Wang X,
Shu X.-Z.
J. Am. Chem. Soc. 2020; 142: 16787
18
Guo P,
Wang K,
Jin W.-J,
Xie H,
Qi L,
Liu X.-Y,
Shu X.-Z.
J. Am. Chem. Soc. 2021; 143: 513
19 It is possible that the oxalates undergo halide exchange to form benzyl halides, which can also react with nickel to form dimers. However, during the reactions, we have failed to detect any benzyl halides by GC-MS.
20a
Biswas S,
Weix DJ.
J. Am. Chem. Soc. 2013; 135: 16192
20b
Weix DJ.
Acc. Chem. Res. 2015; 48: 1767
20c
Diccianni JB,
Diao T.
Trends Chem. 2019; 1: 830
21a
He R.-D,
Li C.-L,
Pan Q.-Q,
Guo P,
Liu X.-Y,
Shu X.-Z.
J. Am. Chem. Soc. 2019; 141: 12481
21b Ref 17b
22
Wang P.-Z,
Chen J.-R,
Xiao W.-J.
Org. Biomol. Chem. 2019; 17: 6936
23
Nwachukwu CI,
McFadden TP,
Roberts AG.
J. Org. Chem. 2020; 85: 9979
24
Park G,
Yi SY,
Jung J.-H,
Cho EJ,
You Y.-M.
Chem. Eur. J. 2016; 22: 17790
25
Hu Y.-L,
Li F,
Gu G.-L,
Lu M.
Catal. Lett. 2011; 141: 467
26
Manley DW,
Walton JC.
Org. Lett. 2014; 16: 5394
27
Li Y.-J,
Izumi T.
Synth. Commun. 2003; 33: 3583
28
Wakui H,
Kawasaki S,
Satoh T,
Miura M,
Nomura M.
J. Am. Chem. Soc. 2004; 126: 8658