Synthesis 2021; 53(17): 3094-3100
DOI: 10.1055/a-1467-2432
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Synthesis of Dibenzyls by Nickel-Catalyzed Homocoupling of Benzyl Alcohols

Feng-Feng Pan
a   State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. of China
b   College of Chemical Engineering and Technology, Tianshui Normal University, 60 South Xihe Road, Tianshui, 741001, P. R. of China
,
Peng Guo
a   State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. of China
,
Xiaochuang Huang
c   Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., 168 West Chaoyang Road, Huai’An, Jiangsu, 223003, P. R. of China
,
a   State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. of China
› Author Affiliations
We thank the National Natural Science Foundation of China for their financial support (21772072, 22071084).


Abstract

Dibenzyls are essential building blocks that are widely used in organic synthesis, and they are typically prepared by the homocoupling of halides, organometallics, and ethers. Herein, we report an approach to this class of compounds using alcohols, which are more stable and readily available. The reaction proceeds via nickel-catalyzed and dimethyl oxalate assisted dynamic kinetic homocoupling of benzyl alcohols. Both primary and secondary alcohols are tolerated.

Supporting Information



Publication History

Received: 05 March 2021

Accepted after revision: 25 March 2021

Accepted Manuscript online:
25 March 2021

Article published online:
14 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Iwasa E, Hamashima Y, Fujishiro S, Hashizume D, Sodeoka M. Tetrahedron 2011; 67: 6587
    • 2b Duan X.-J, Li X.-M, Wang B.-G. J. Nat. Prod. 2007; 70: 1210
    • 3a Goldup SM, Leigh DA, McBurney RT, McGonigal PR, Plant A. Chem. Sci. 2010; 1: 383
    • 3b Prinsell MR, Everson DA, Weix DJ. Chem. Commun. 2010; 46: 5743
    • 3c Mboyi CD, Gaillard S, Mabaye MD, Pannetier N, Renaud J.-L. Tetrahedron 2013; 69: 4875
    • 3d Khan S, Ghatak A, Bhar S. Tetrahedron Lett. 2015; 56: 2480
    • 3e Liu Y, Xiao S, Qi Y, Du F. Chem. Asian J. 2017; 12: 673
  • 4 Cai Y, Qian X, Gosmini C. Adv. Synth. Catal. 2016; 358: 2427
  • 5 Barrero AF, Herrador MM, Quílez del Moral JF, Arteaga P, Akssira M, El Hanbali F, Arteaga JF, Diéguez HR, Sánchez EM. J. Org. Chem. 2007; 72: 2251
  • 6 Liu Y, Zhang D, Xiao S, Qi Y, Liu S. Asian J. Org. Chem. 2019; 8: 858
  • 7 Xu X, Cheng D, Pei W. J. Org. Chem. 2006; 71: 6637
  • 8 Sato K, Inoue Y, Mori T, Sakaue A, Tarui A, Omote M, Kumadaki I, Ando A. Org. Lett. 2014; 16: 3756
    • 9a Lei A, Zhang X. Org. Lett. 2002; 4: 2285
    • 9b Cahiez G, Moyeux A, Buendia J, Duplais C. J. Am. Chem. Soc. 2007; 129: 13788
    • 9c Zhou Z, Xue W. J. Organomet. Chem. 2009; 694: 599
    • 9d Zhu Y, Xiong T, Han W, Shi Y. Org. Lett. 2014; 16: 6144
  • 10 Cao Z.-C, Shi Z.-J. J. Am. Chem. Soc. 2017; 139: 6546
    • 11a Diederich F, Stang PJ. Metal-Catalyzed Cross-Coupling Reactions . Wiley-VCH; Weinheim: 1998
    • 11b Kuwano R. Synthesis 2009; 7: 1049
    • 11c Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 11d Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 11e Tollefson EJ, Hanna LE, Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
    • 12a A review: Pang X, Peng X, Shu X.-Z. Synthesis 2020; 52: 3751

    • Selected examples:
    • 12b Qian X, Auffrant A, Felouat A, Gosmini C. Angew. Chem. Int. Ed. 2011; 50: 10402
    • 12c Ackerman LK. G, Anka-Lufford LL, Naodovic M, Weix DJ. Chem. Sci. 2015; 6: 1115
    • 12d Tollefson EJ, Erickson LW, Jarvo ER. J. Am. Chem. Soc. 2015; 137: 9760
    • 12e Yan X.-B, Li C.-L, Jin W.-J, Guo P, Shu X.-Z. Chem. Sci. 2018; 9: 4529
    • 12f Ye Y, Chen H, Sessler JL, Gong H. J. Am. Chem. Soc. 2019; 141: 820

      Metal-catalyzed hydrogen-borrowing reactions:
    • 13a Yang Q, Wang Q, Yu Z. Chem. Soc. Rev. 2015; 44: 2305
    • 13b Corma A, Navas J, Sabater MJ. Chem. Rev. 2018; 118: 1410

      Ru-catalyzed dehydroxylative reactions:
    • 14a Lee D.-H, Kwon K.-H, Yi CS. Science 2011; 333: 1613
    • 14b Lee D.-H, Kwon K.-H, Yi CS. J. Am. Chem. Soc. 2012; 134: 7325

      Transition-metal-catalyzed functionalization of allylic alcohols:
    • 15a Butta NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929
    • 15b Yang B, Wang Z.-X. J. Org. Chem. 2017; 82: 4542
    • 15c Jia X.-G, Guo P, Duan J.-C, Shu X.-Z. Chem. Sci. 2018; 9: 640
  • 16 Metal-catalyzed coupling using strong basic nucleophiles: Yu D.-G, Wang X, Zhu R.-Y, Luo S, Zhang X.-B, Wang B.-Q, Wang L, Shi Z.-J. J. Am. Chem. Soc. 2012; 134: 14638

    • Ti-catalyzed radical dehydroxylative reaction:
    • 17a Suga T, Ukaji Y. Org. Lett. 2018; 20: 7846
    • 17b Xie H, Guo J, Wang Y.-Q, Wang K, Guo P, Su P.-F, Wang X, Shu X.-Z. J. Am. Chem. Soc. 2020; 142: 16787
  • 18 Guo P, Wang K, Jin W.-J, Xie H, Qi L, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2021; 143: 513
  • 19 It is possible that the oxalates undergo halide exchange to form benzyl halides, which can also react with nickel to form dimers. However, during the reactions, we have failed to detect any benzyl halides by GC-MS.
    • 21a He R.-D, Li C.-L, Pan Q.-Q, Guo P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 12481
    • 21b Ref 17b
  • 22 Wang P.-Z, Chen J.-R, Xiao W.-J. Org. Biomol. Chem. 2019; 17: 6936
  • 23 Nwachukwu CI, McFadden TP, Roberts AG. J. Org. Chem. 2020; 85: 9979
  • 24 Park G, Yi SY, Jung J.-H, Cho EJ, You Y.-M. Chem. Eur. J. 2016; 22: 17790
  • 25 Hu Y.-L, Li F, Gu G.-L, Lu M. Catal. Lett. 2011; 141: 467
  • 26 Manley DW, Walton JC. Org. Lett. 2014; 16: 5394
  • 27 Li Y.-J, Izumi T. Synth. Commun. 2003; 33: 3583
  • 28 Wakui H, Kawasaki S, Satoh T, Miura M, Nomura M. J. Am. Chem. Soc. 2004; 126: 8658