Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(17): 3094-3100
DOI: 10.1055/a-1467-2432
DOI: 10.1055/a-1467-2432
special topic
Bond Activation – in Honor of Prof. Shinji Murai
Synthesis of Dibenzyls by Nickel-Catalyzed Homocoupling of Benzyl Alcohols
We thank the National Natural Science Foundation of China for their financial support (21772072, 22071084).
Abstract
Dibenzyls are essential building blocks that are widely used in organic synthesis, and they are typically prepared by the homocoupling of halides, organometallics, and ethers. Herein, we report an approach to this class of compounds using alcohols, which are more stable and readily available. The reaction proceeds via nickel-catalyzed and dimethyl oxalate assisted dynamic kinetic homocoupling of benzyl alcohols. Both primary and secondary alcohols are tolerated.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1467-2432.
- Supporting Information
Publication History
Received: 05 March 2021
Accepted after revision: 25 March 2021
Accepted Manuscript online:
25 March 2021
Article published online:
14 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Barrett TN, Braddock DC, Monta A, Webb MR, White AJ. P. J. Nat. Prod. 2011; 74: 1980
- 1b Zhu L.-J, Wang M.-Q, Qin Y, Wang M.-N, Zhang G.-Q, Niu L.-T, Chen J.-B, Zhang X, Yao X.-S. J. Asian Nat. Prod. Res. 2020; in press DOI: 10.1080/10286020.2020.1826937.
- 2a Iwasa E, Hamashima Y, Fujishiro S, Hashizume D, Sodeoka M. Tetrahedron 2011; 67: 6587
- 2b Duan X.-J, Li X.-M, Wang B.-G. J. Nat. Prod. 2007; 70: 1210
- 3a Goldup SM, Leigh DA, McBurney RT, McGonigal PR, Plant A. Chem. Sci. 2010; 1: 383
- 3b Prinsell MR, Everson DA, Weix DJ. Chem. Commun. 2010; 46: 5743
- 3c Mboyi CD, Gaillard S, Mabaye MD, Pannetier N, Renaud J.-L. Tetrahedron 2013; 69: 4875
- 3d Khan S, Ghatak A, Bhar S. Tetrahedron Lett. 2015; 56: 2480
- 3e Liu Y, Xiao S, Qi Y, Du F. Chem. Asian J. 2017; 12: 673
- 4 Cai Y, Qian X, Gosmini C. Adv. Synth. Catal. 2016; 358: 2427
- 5 Barrero AF, Herrador MM, Quílez del Moral JF, Arteaga P, Akssira M, El Hanbali F, Arteaga JF, Diéguez HR, Sánchez EM. J. Org. Chem. 2007; 72: 2251
- 6 Liu Y, Zhang D, Xiao S, Qi Y, Liu S. Asian J. Org. Chem. 2019; 8: 858
- 7 Xu X, Cheng D, Pei W. J. Org. Chem. 2006; 71: 6637
- 8 Sato K, Inoue Y, Mori T, Sakaue A, Tarui A, Omote M, Kumadaki I, Ando A. Org. Lett. 2014; 16: 3756
- 9a Lei A, Zhang X. Org. Lett. 2002; 4: 2285
- 9b Cahiez G, Moyeux A, Buendia J, Duplais C. J. Am. Chem. Soc. 2007; 129: 13788
- 9c Zhou Z, Xue W. J. Organomet. Chem. 2009; 694: 599
- 9d Zhu Y, Xiong T, Han W, Shi Y. Org. Lett. 2014; 16: 6144
- 10 Cao Z.-C, Shi Z.-J. J. Am. Chem. Soc. 2017; 139: 6546
- 11a Diederich F, Stang PJ. Metal-Catalyzed Cross-Coupling Reactions . Wiley-VCH; Weinheim: 1998
- 11b Kuwano R. Synthesis 2009; 7: 1049
- 11c Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 11d Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
- 11e Tollefson EJ, Hanna LE, Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
- 12a A review: Pang X, Peng X, Shu X.-Z. Synthesis 2020; 52: 3751
- 12b Qian X, Auffrant A, Felouat A, Gosmini C. Angew. Chem. Int. Ed. 2011; 50: 10402
- 12c Ackerman LK. G, Anka-Lufford LL, Naodovic M, Weix DJ. Chem. Sci. 2015; 6: 1115
- 12d Tollefson EJ, Erickson LW, Jarvo ER. J. Am. Chem. Soc. 2015; 137: 9760
- 12e Yan X.-B, Li C.-L, Jin W.-J, Guo P, Shu X.-Z. Chem. Sci. 2018; 9: 4529
- 12f Ye Y, Chen H, Sessler JL, Gong H. J. Am. Chem. Soc. 2019; 141: 820
- 13a Yang Q, Wang Q, Yu Z. Chem. Soc. Rev. 2015; 44: 2305
- 13b Corma A, Navas J, Sabater MJ. Chem. Rev. 2018; 118: 1410
- 14a Lee D.-H, Kwon K.-H, Yi CS. Science 2011; 333: 1613
- 14b Lee D.-H, Kwon K.-H, Yi CS. J. Am. Chem. Soc. 2012; 134: 7325
- 15a Butta NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929
- 15b Yang B, Wang Z.-X. J. Org. Chem. 2017; 82: 4542
- 15c Jia X.-G, Guo P, Duan J.-C, Shu X.-Z. Chem. Sci. 2018; 9: 640
- 16 Metal-catalyzed coupling using strong basic nucleophiles: Yu D.-G, Wang X, Zhu R.-Y, Luo S, Zhang X.-B, Wang B.-Q, Wang L, Shi Z.-J. J. Am. Chem. Soc. 2012; 134: 14638
- 17a Suga T, Ukaji Y. Org. Lett. 2018; 20: 7846
- 17b Xie H, Guo J, Wang Y.-Q, Wang K, Guo P, Su P.-F, Wang X, Shu X.-Z. J. Am. Chem. Soc. 2020; 142: 16787
- 18 Guo P, Wang K, Jin W.-J, Xie H, Qi L, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2021; 143: 513
- 19 It is possible that the oxalates undergo halide exchange to form benzyl halides, which can also react with nickel to form dimers. However, during the reactions, we have failed to detect any benzyl halides by GC-MS.
- 20a Biswas S, Weix DJ. J. Am. Chem. Soc. 2013; 135: 16192
- 20b Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 20c Diccianni JB, Diao T. Trends Chem. 2019; 1: 830
- 21a He R.-D, Li C.-L, Pan Q.-Q, Guo P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 12481
- 21b Ref 17b
- 22 Wang P.-Z, Chen J.-R, Xiao W.-J. Org. Biomol. Chem. 2019; 17: 6936
- 23 Nwachukwu CI, McFadden TP, Roberts AG. J. Org. Chem. 2020; 85: 9979
- 24 Park G, Yi SY, Jung J.-H, Cho EJ, You Y.-M. Chem. Eur. J. 2016; 22: 17790
- 25 Hu Y.-L, Li F, Gu G.-L, Lu M. Catal. Lett. 2011; 141: 467
- 26 Manley DW, Walton JC. Org. Lett. 2014; 16: 5394
- 27 Li Y.-J, Izumi T. Synth. Commun. 2003; 33: 3583
- 28 Wakui H, Kawasaki S, Satoh T, Miura M, Nomura M. J. Am. Chem. Soc. 2004; 126: 8658
Selected examples:
Metal-catalyzed hydrogen-borrowing reactions:
Ru-catalyzed dehydroxylative reactions:
Transition-metal-catalyzed functionalization of allylic alcohols:
Ti-catalyzed radical dehydroxylative reaction: