Synthesis 2021; 53(17): 3101-3109
DOI: 10.1055/a-1468-8275
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Synthesis of Fused Diaziridine Derivatives from Cyclic Secondary Amines by Utilizing N-Bromosulfonamides as an Aminating Reagent

Yuuki Kiyosu
,
Shino Tanaka
,
Sota Okumura
,
,
This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers JP19H02716 (S.M.) and JP20K05511 (K.K.).


In memory of Prof. Dr. Kilian Muñiz (1970−2020)

Abstract

The synthesis of a series of fused diaziridines, which are difficult to access by existing methods, was achieved by the reaction of cyclic secondary amines with p-toluenesulfonamide in the presence of N-bromosuccinimide (NBS) and a suitable base. This oxidation system enables the efficient in situ formation of the key intermediates, which are N-bromoamines (a precursor of cyclic imines) and N-bromosulfonamides. In addition, an alternative method using N-bromo-N-sodio-p-toluenesulfonamide (bromamine-T) in the presence of a catalytic amount of CF3CO2H for the synthesis of fused diaziridines is also reported.

Supporting Information



Publication History

Received: 12 March 2021

Accepted after revision: 29 March 2021

Accepted Manuscript online:
29 March 2021

Article published online:
20 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Schmitz E. Adv. Heterocycl. Chem. 1979; 24: 63
    • 1b Schmitz E. Three-membered Rings with Two Heteroatoms and Fused-ring Derivatives. In Comprehensive Heterocyclic Chemistry, Vol. 7. Lwowski W. Pergamon Press; Oxford: 1984: 195
    • 1c Heine HW. Diaziridines, 3H-Diazirines, Diaziridinones and Diaziridinimines. In The Chemistry of Heterocyclic Compounds Vol. 42: Small Ring Heterocycles – Part 2. Hassner A. Wiley Interscience; New York: 1983
    • 2a Makhova NN, Shevtsov AV, Petukhova VY. Russ. Chem. Rev. 2011; 80: 1035
    • 2b Chuang-Yang H, Doyle AG. Chem. Rev. 2014; 114: 8153
    • 2c Zhu Y, Cornwall RC, Du H, Zhao B, Shi Y. Acc. Chem. Res. 2014; 47: 3665
    • 2d Makhova NN, Belen’kii LI, Gazieva GA, Dalinger IL, Konstantinova LS, Kuznetsov VV, Kravchenko AN, Krayushkin MM, Rakitin OA, Starosotnikov AM, Fershtat LL, Shevelev SA, Shirinian VZ, Yarovenko VN. Russ. Chem. Rev. 2020; 89: 55
    • 3a Dehn DL, Winski SL, Ross D. Clin. Cancer Res. 2004; 10: 3147
    • 3b Sridar C, Kobayashi Y, Brevig H, Kent UM, Puppali SG, Rimoldi JM, Hollenberg PF. Drug Metab. Dispos. 2006; 34: 1849
    • 3c Yan C, Kepa JK, Siegel D, Stratford IJ, Ross D. Mol. Pharmacol. 2008; 74: 1657
    • 3d Kamuf M, Trapp O. Chirality 2011; 23: 113
    • 3e Masuda Y, Aoyama K, Yoshida M, Kobayashi K, Ohshiro T, Tomoda H, Doi T. Chem. Pharm. Bull. 2016; 64: 754
    • 4a Makhova NN, Petukhova VY, Kuznetsov VV. ARKIVOC 2008; (i): 128
    • 4b Ravindra S, Jesin CP. I, Shabashini A, Nandi GC. Adv. Synth. Catal. 2021; 363: 1756

      For selected examples, see:
    • 5a Schmitz E. Angew. Chem. 1959; 71: 127
    • 5b Abendroth HJ, Henrich G. Angew. Chem. 1959; 71: 283
    • 5c Carroccia L, Fioravanti S, Pellacani L, Sadun C, Tardella PA. Tetrahedron 2011; 67: 5375
    • 5d Carroccia L, Delfini M, Fioravanti S, Pellacani L, Sciubba F. J. Org. Chem. 2012; 77: 2069
    • 5e Lykke L, Halskov KS, Carlsen BD, Chen VX, Jørgensen KA. J. Am. Chem. Soc. 2013; 135: 4692
    • 5f Beede AW, Dohmeier EF, Moura-Letts G. Chem. Commun. 2015; 51: 13511

      For selected examples, see:
    • 6a Nielsen AT, Moore DW, Atkins RL, Mallory D, DiPol J, LaBerge JM. J. Org. Chem. 1976; 41: 3221
    • 6b Shustov GV, Denisenko SN, Kostyanovskii RG. Izv. Akad. Nauk SSSR, Ser. Khim. 1983; 1930
    • 6c Denisenko SN, Shustov GV, Kostyanovskii RG. J. Chem. Soc., Chem. Commun. 1983; 1275
    • 6d Shustov GV, Denisenko SN, Asfandiarov NL, Khusnutdianova LR, Kostyanovskii RG. Izv. Akad. Nauk SSSR, Ser. Khim. 1986; 1824
    • 6e Shustov GV, Denisenko SN, Kostyanovskii RG. Izv. Akad. Nauk SSSR, Ser. Khim. 1986; 1831
    • 6f Allen JM, Lambert TH. Tetrahedron 2014; 70: 4111
    • 7a Schöpt C, Komzak A, Braun F, Jacobi E. Ann. Chem. 1947; 559: 1
    • 7b Nomura Y, Ogawa K, Takeuchi Y, Tomoda S. Chem. Lett. 1977; 6: 693
    • 7c Baker JD, Heath RR, Millar JG. J. Chem. Ecol. 1992; 18: 1595
    • 7d Zhang X, Chingin K, Zhong D, Liang J, Ouyang Y, Chen H. Sci. Rep. 2017; 7: 7675
    • 8a Minakata S. Acc. Chem. Res. 2009; 42: 1172
    • 8b Hayakawa J, Kuzuhara M, Minakata S. Org. Biomol. Chem. 2010; 8: 1424
    • 8c Minakata S, Hayakawa J. Chem. Commun. 2011; 47: 1905
    • 8d Murakami Y, Takeda Y, Minakata S. J. Org. Chem. 2011; 76: 6277
    • 8e Kiyokawa K, Kojima T, Hishikawa Y, Minakata S. Chem. Eur. J. 2015; 21: 15548
  • 9 Nair CG. R, Indrasenan P. Talanta 1976; 23: 239
  • 10 Konigsberg N, Stevenson G, Luck JM. J. Biol. Chem. 1960; 235: 1341
  • 11 Treatment of bromamine-T with CF3CO2H provided N-bromo-p-toluenesulfonamide (9), which was analyzed by 1H NMR spectroscopy and ESI-MS.
  • 12 CCDC 2067657 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 13 Biancalana L, Bortoluzzi M, Ferretti E, Hayatifar M, Marchetti F, Pampaloni G, Zacchini S. RSC Adv. 2017; 7: 10158
  • 14 Man R.-J, Tang D.-J, Lu X.-Y, Duan Y.-T, Tao X.-X, Yang M.-R, Wang L.-L, Wang B.-Z, Xu C, Zhu H.-L. Med. Chem. Commun. 2016; 7: 1759
  • 15 Chen W, Ma L, Paul A, Seidel D. Nat. Chem. 2018; 10: 165
  • 16 Kaplanek R, Krchnaak V. Tetrahedron Lett. 2013; 54: 2600