Subscribe to RSS
DOI: 10.1055/a-1472-0881
Pd(II)-Catalyzed Directing-Group-Aided C–H Arylation and Alkylation of Pyrene Core: Synthesis of C1,C2- and C1,C10-Disubstituted Pyrene Motifs
S.A.B. thanks the Science and Engineering Research Board (SERB), the Department of Science and Technology (DST), New Delhi, India, for funding (Grant No. EMR/2017/002515). S.A.B. thanks IISER Mohali for funding initial part of this research. A.D. thanks IISER Mohali for providing a PhD fellowship.
Abstract
We report the application of the Pd(II)-catalyzed, directing-group-aided C–H arylation/alkylation tactics to functionalize the pyrene core, especially, the relatively inaccessible C2 and K-region C10 positions of the pyrene core and augmentation of the library of pyrene derivatives with C1,C2- and C1,C10-disubstituted pyrene motifs. The Pd(II)-catalyzed β-C–H arylation/alkylation of the C2-position of pyrene-1-carboxamide possessing an 8-aminoquinoline directing group yielded various C1,C2-disubstituted pyrenes. Similarly, the Pd(II)-catalyzed selective γ-C–H arylation/alkylation of the C10-position of N-(pyren-1-yl)picolinamide, possessing a picolinamide directing group, yielded various C1,C10-disubstituted pyrenes. Examples of C(9)–H arylation of pyrene-1-carboxamide and the removal of the directing group after the C–H arylation/alkylation reactions were also shown. The structures of representative pyrene derivatives were confirmed by the X-ray structure analysis. Given the importance of the pyrene derivatives in various fields of chemical sciences, this report is a contribution towards augmentation of the library of pyrene derivatives with C1,C2- and C1,C10-disubstituted pyrene amide motifs.
Key words
C–H activation - C–H arylation/alkylation - C–H functionalization - bidentate directing group - carboxamides - palladium - pyreneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1472-0881.
- Supporting Information
Publication History
Received: 09 March 2021
Accepted after revision: 31 March 2021
Accepted Manuscript online:
31 March 2021
Article published online:
26 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Negishi E.-i. Angew. Chem. Int. Ed. 2011; 50: 6738
- 1b Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
- 1c Heck RF. Acc. Chem. Res. 1979; 12: 146
- 1d Johansson Seechurn CC, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 1e Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
- 1f Campeau L.-C, Hazari N. Organometallics 2019; 38: 3
- 1g Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 1h Nielsen MB. Synthesis 2016; 48: 2732
- 1i Bolm C. J. Org. Chem. 2012; 77: 5221
- 1j Sestelo JP, Sarandeses LA. Advances in Cross-Coupling Reactions . MDPI; Switzerland: 2020
- 1k Zheng S, Hu Y, Yuan W. Synthesis 2021; in press
- 1l Ma X, Murray B, Biscoe MR. Nat. Chem. Rev. 2020; 4: 584
- 1m Zhou T, Szostak M. Catal. Sci. Technol. 2020; 10: 5702
- 1n Nocera G, Murphy JA. Synthesis 2020; 52: 327
- 2a Miyaura N. Cross-Coupling Reactions, 1st ed.. Springer; Berlin: 2002
- 2b Colacot T. New Trends in Cross-Coupling: Theory and Applications, 1st ed. The Royal Society of Chemistry; Cambridge: 2015
- 2c de Meijere A, Bräse S, Oestreich M. Metal-Catalyzed Cross-Coupling Reactions and More, 1st ed. Wiley-VCH; Weinheim: 2014
- 2d Diederich F, Stang PJ. Metal-Catalyzed Cross-Coupling Reactions, 1st ed. Wiley-VCH; Weinheim: 1998
- 2e Molnár A. Palladium-Catalyzed Coupling Reactions, 1st ed. Wiley-VCH; Weinheim: 2013
- 3a Murahashi S. J. Am. Chem. Soc. 1955; 77: 6403
- 3b Murahashi S, Horiie S. J. Am. Chem. Soc. 1956; 78: 4816
- 4a Kleiman JP, Dubeck M. J. Am. Chem. Soc. 1963; 85: 1544
- 4b Bagga MM, Flannigan WT, Knox GR, Pauson PL, Preston FJ, Reed RI. J. Chem. Soc. C 1968; 36
- 4c Knobler CB, Crawford SS, Kaesz HD. Inorg. Chem. 1975; 14: 2062
- 4d Cheney AJ, Shaw BL. J. Chem. Soc., Dalton Trans. 1972; 860
- 4e Constable AG, McDonald WS, Sawkins LC, Shaw BL. J. Chem. Soc., Chem. Commun. 1978; 1061
- 4f Balavoine G, Client JC. J. Organomet. Chem. 1990; 390: c84
- 4g Komiya S, Yamamoto A. Chem. Lett. 1975; 4: 475
- 4h McGuiggan MF, Pignolet LH. Inorg. Chem. 1982; 21: 2523
- 4i Foot RJ, Heaton BT. J. Chem. Soc., Dalton Trans. 1979; 295
- 4j Cope AC, Siekman RW. J. Am. Chem. Soc. 1965; 87: 3272
- 6 Jordan RF, Taylor DF. J. Am. Chem. Soc. 1989; 111: 778
- 7 Moor EJ, Pretzer WR, O’Connell TJ, Harris J, LaBounty L, Chou L, Grimmer SS. J. Am. Chem. Soc. 1992; 114: 5888
- 8 Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature 1993; 366: 529
- 9a Zhang Y.-H, Shi G.-F, Yu J.-Q. Carbon–Carbon σ-Bond Formation via C–H Bond Functionalization . In Comprehensive Organic Synthesis II, Chap. 3.23. Knochel P. Elsevier; Amsterdam: 2014: 1101
- 9b For a themed issue on C–H activation, see: Crabtree RH, Lei A. Chem. Rev. 2017; 117: 8481
- 9c For a themed issue on C–H activation reactions, see: Davies HM. L, Bois J, Yu J.-Q. Chem. Soc. Rev. 2011; 40: 1855
- 9d Kakiuchi F, Murai S. Acc. Chem. Res. 2002; 35: 826
- 9e Hirano K, Miura M. Chem. Lett. 2015; 44: 868
- 9f Rej S, Das A, Chatani N. Coord. Chem. Rev. 2021; 431: 213683
- 9g Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 9h Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 9i Nguyen TH. L, Gigant N, Joseph D. ACS Catal. 2018; 8: 1546
- 9j Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 9k Zhu R.-Y, Farmer ME, Chen Y.-Q, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
- 10a Yoshikai N. J. Synth. Org. Chem. Jpn. 2014; 72: 1198
- 10b Huang Z, Lim HN, Mo F, Young MC, Dong G. Chem. Soc. Rev. 2015; 44: 7764
- 10c Rao W.-H, Shi B.-F. Org. Chem. Front. 2016; 3: 1028
- 10d Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 10e Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
- 10f Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14700
- 10g Banerjee A, Sarkar S, Patel B. Org. Biomol. Chem. 2017; 15: 505
- 10h Bag S, Maiti D. Synthesis 2016; 48: 804
- 10i Baudoin O. Acc. Chem. Res. 2017; 50: 1114
- 10j Yang K, Song M, Liu H, Ge H. Chem. Sci. 2020; 11: 12616
- 10k Subramanian P, Rudolf GC, Kaliappan KP. Chem. Asian J. 2016; 11: 168
- 10l Zhang M, Luo A, Shi Y, Su R, Yang Y, You J. ACS Catal. 2019; 9: 11802
- 10m Yorimitsu H, Yoshimura A, Misaki Y. Synthesis 2020; 52: 3326
- 10n Saito H, Yamamoto K, Sumiya Y, Liu L.-J, Nogi K, Maeda S, Yorimitsu H. Chem. Asian J. 2020; 15: 2442
- 11a Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
- 11b Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
- 11c Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 11d Yang X, Shan G, Wang L, Rao Y. Tetrahedron Lett. 2016; 57: 819
- 11e Li H, Li B.-J, Shi Z.-J. Catal. Sci. Technol. 2011; 1: 191
- 11f Castro LC. M, Chatani N. Chem. Lett. 2015; 44: 410
- 11g Yadav MR, Rit RK, Majji S, Sahoo AK. Asian J. Org. Chem. 2015; 4: 846
- 11h Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 11i He G, Wang B, Nack WA, Chen G. Acc. Chem. Res. 2016; 49: 635
- 11j Noisier AF. M, Brimble MA. Chem. Rev. 2014; 114: 8775
- 12a Shabashov D, Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
- 12b Aihara Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 898
- 12c Takamatsu K, Hirano K, Miura M. Angew. Chem. Int. Ed. 2017; 56: 5353
- 12d Kanyiva KS, Kuninobu Y, Kanai M. Org. Lett. 2014; 16: 1968
- 12e Reddy MD, Blanton AN, Watkins EB. J. Org. Chem. 2017; 82: 5080
- 12f Chen Y, Quan Y, Xie Z. Chem. Commun. 2020; 56: 12997
- 12g Gou Q, Zhang Z.-F, Liu Z.-C, Qin J. J. Org. Chem. 2015; 80: 3176
- 12h Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
- 12i Hu P, Bach T. Synlett 2015; 26: 2853
- 12j Hoshiya N, Kondo M, Fukuda H, Arisawa M, Uenishi J, Shuto S. J. Org. Chem. 2017; 82: 2535
- 13a Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
- 13b Xu J.-W, Zhang Z.-Z, Rao W.-H, Shi B.-F. J. Am. Chem. Soc. 2016; 138: 10750
- 13c Bolsakova J, Lukasevics L, Grigorijeva L. J. Org. Chem. 2020; 85: 4482
- 13d He G, Chen G. Angew. Chem. Int. Ed. 2011; 50: 5192
- 13e Zeng W, Nukeyeva M, Wang Q, Jiang C. Org. Biomol. Chem. 2018; 16: 598
- 13f Zhao Y, Chen G. Org. Lett. 2011; 13: 4850
- 14a Parella R, Babu SA. J. Org. Chem. 2017; 82: 7123
- 14b Gopalakrishnan B, Mohan S, Parella R, Babu SA. J. Org. Chem. 2016; 81: 8988
- 14c Gopalakrishnan B, Babu SA, Padmavathi R. Tetrahedron 2015; 71: 8333
- 14d Reddy C, Bisht N, Parella R, Babu SA. J. Org. Chem. 2016; 81: 12143
- 14e Parella R, Babu SA. J. Org. Chem. 2017; 82: 6550
- 14f Naveen, Rajkumar V, Babu SA. Gopalakrishnan B. J. Org. Chem. 2016; 81: 12197
- 14g Parella R, Babu SA. J. Org. Chem. 2015; 80: 12379
- 14h Parella R, Babu SA. J. Org. Chem. 2015; 80: 2339
- 14i Singh P, Babu SA, Aggarwal Y, Patel P. Asian J. Org. Chem. 2021; 10: 180
- 14j Bisht N, Babu SA, Tomar R. Asian J. Org. Chem. 2020; 9: 1225
- 14k Padmavathi R, Babu SA. Asian J. Org. Chem. 2019; 8: 899
- 14l Singh P, Dalal A, Babu SA. Asian J. Org. Chem. 2019; 8: 877
- 15a Rej S, Chatani N. ACS Catal. 2018; 8: 6699
- 15b Odani R, Hirano K, Satoh T, Miura M. J. Org. Chem. 2013; 78: 11045
- 15c Pradhan S, De B. P, Punniyamurthy T. J. Org. Chem. 2017; 82: 4883
- 15d Roy S, Pradhan S, Punniyamurthy T. Chem. Commun. 2018; 54: 3899
- 15e Iwasaki M, Kaneshika W, Tsuchiya Y, Nakajima K, Nishihara Y. J. Org. Chem. 2014; 79: 11330
- 15f Ying J, Fu L.-Y, Zhong G, Wu X.-F. Org. Lett. 2019; 21: 5694
- 15g Asako S, Ilies L, Nakamura E. J. Am. Chem. Soc. 2013; 135: 17755
- 15h Pradhan S, Roy S, Banerjee S, De P. B, Punniyamurthy T. J. Org. Chem. 2020; 85: 5741
- 15i Gao Y, Zhang M, Wang C, Yang Z, Huang X, Feng R, Qi C. Chem. Commun. 2020; 56: 14231
- 15j During our investigation of this work, a paper revealing the Pd-catalyzed arylation of pyrene 1-carboxylic acid followed by decarboxylation appeared, see: Just-Baringo X, Shin Y, Panigrahi A, Zarattini M, Nagyte V, Zhao L, Kostarelos K, Casiraghi C, Larrosa I. Chem. Sci. 2020; 11: 2472
- 15k During our investigation, a paper was published that revealed an example of Cu-catalyzed arylation of pyrene 1-carboxamide by using C(9)–H arylation of pyrene-1-carboxamide with aryliodonium salts as arylating reagent, see: Luo A, Zhang M, Fu Z, Lan J, Wu D, You J. Beilstein J. Org. Chem. 2020; 16: 530
- 16a Mateo-Alonso A. Eur. J. Org. Chem. 2017; 7006
- 16b Feng X, Hu J.-Y, Redshaw C, Yamato T. Chem. Eur. J. 2016; 22: 11898
- 16c Zych D. Molecules 2019; 24: 2551
- 16d Figueira-Duarte TM, Müllen K. Chem. Rev. 2011; 111: 7260
- 16e Ohishi Y, Inouye M. Tetrahedron Lett. 2019; 60: 151232
- 16f Howarth AJ, Majewski MB, Wolf MO. Coord. Chem. Rev. 2015; 282: 139
- 16g Mateo-Alonso A. Chem. Soc. Rev. 2014; 43: 6311
- 16h Karuppannan S, Chambron J.-C. Chem. Asian J. 2011; 6: 694
- 16i Gong Y, Zhan X, Li Q, Li Z. Sci. China Chem. 2016; 59: 1623
- 16j Bains G, Patel AB, Narayanaswami V. Molecules 2011; 16: 7909
- 16k Pirouz S, Duhamel J. J. Polym. Sci., Part B: Polym. Phys. 2017; 55: 7
- 16l Manandhar E, Wallace KJ. Inorg. Chim. Acta 2012; 381: 15
- 16m Islam MM, Hu Z, Wang Q, Redshaw C, Feng X. Mater. Chem. Front. 2019; 3: 762
- 16n Casas-Solvas JM, Howgego JD, Davis AP. Org. Biomol. Chem. 2014; 12: 212
- 17a Coventry DN, Batsanov AS, Goeta AE, Howard JK, Marder TB, Perutz RN. Chem. Commun. 2005; 2172
- 17b Tchon D, Trzybinski D, Wrona-Piotrowicz A, Makal A. CrystEngComm 2019; 21: 5845
- 17c Picchiotti A, Nenov A, Giussani A, Prokhorenko VI, Miller RJ. D, Mukamel S, Garavelli M. J. Phys. Chem. Lett. 2019; 10: 3481
- 17d Anetai H, Wada Y, Takeda T, Hoshino N, Yamamoto S, Mitsuishi M, Takenobu T, Akutagawa T. J. Phys. Chem. Lett. 2015; 6: 1813
- 17e Seki H, Onishi S, Asamura N, Suzuki Y, Kawamata J, Kaneno D, Hadano S, Watanabe S, Niko Y. J. Mater. Chem. B 2018; 6: 7396
- 17f Nakamura Y, Nakazato T, Kamatsuka T, Shinokubo H, Miyake Y. Chem. Eur. J. 2019; 25: 10571
- 17g Merz J, Fink J, Friedrich A, Krummenacher I, Mamari HH. A, Lorenzen S, Haehnel M, Eichhorn A, Moos M, Holzapfel M, Braunschwieg H, Lambert C, Steffen A, Ji L, Marder TB. Chem. Eur. J. 2017; 23: 13164
- 17h Shao J.-Y, Yang N, Guo W, Cui B.-B, Chen Q, Zhong Y.-W. Chem. Commun. 2019; 55: 13406
- 17i Takaishi K, Takehana R, Ema T. Chem. Commun. 2018; 54: 1449
- 17j Liu M, Gong X, Zheng C, Gao D. Asian J. Org. Chem. 2017; 6: 1903
- 17k Yang W, Monteiro JH. S. K, de Bettencourt-Dias A, Catalano VJ, Chalifoux WA. Angew. Chem. Int. Ed. 2016; 55: 10427
- 17l Matsumoto A, Suzuki M, Hayashi H, Kuzuhara D, Yuasa J, Kawai T, Aratani N, Yamada H. Bull. Chem. Soc. Jpn. 2017; 90: 667
- 17m Hogan DT, Gelfand BS, Spasyuk DM, Sutherland TC. Mater. Chem. Front. 2020; 4: 268
- 18a Yang J, Huang J, Sun N, Peng Q, Li Q, Ma D, Li Z. Chem. Eur. J. 2015; 21: 6862
- 18b Yang J, Guo Q, Wen X, Gao X, Peng Q, Li Q, Ma D, Li Z. J. Mater. Chem. C 2016; 4: 8506
- 18c Thomas KR, Lin JT, Tao Y.-T, Ko C.-W. J. Am. Chem. Soc. 2001; 123: 9404
- 18d Burroughes JH, Bradley DD. C, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB. Nature 1990; 347: 539
- 18e Bartelmess J, Ballesteros B, de la Torre G, Kiessling D, Campidelli S, Prato M, Torres T, Guldi DM. J. Am. Chem. Soc. 2010; 132: 16202
- 18f Buene AF, Ose EE, Zakariassen AG, Hagfeldt A, Hoff BH. J. Mater. Chem. A 2019; 7: 7581
- 18g Chang J, Lee C.-P, Kumar D, Chen P.-W, Lin L.-Y, Thomas KR. J, Ho C. J. Power Sources 2013; 240: 779
- 18h Lee OP, Yiu AT, Beauguge PM, Woo CH, Holcombe TW, Millstone JE, Douglas JD, Chen MS, Fréchet JM. J. Adv. Mater. 2011; 23: 5359
- 18i Zhao Z, Lam JW, Tang BZ. J. Mater. Chem. 2012; 22: 23726
- 18j Tao S, Zhou Y, Lee C.-S, Zhang X, Lee S.-T. Chem. Mater. 2010; 22: 2138
- 18k Hong Y, Lam JW. Y, Tang BZ. Chem. Soc. Rev. 2011; 40: 5361
- 18l Moulin E, Busseron E, Giuseppone N. Supramolecular Materials for Opto-Electronics . Koch N. Royal Society of Chemistry; Cambridge: 2015: 1-52
- 18m Zhang M, Parajuli RR, Mastrogiovanni D, Dai B, Lo P, Cheung W, Brukh R, Chiu PL, Zhou T, Liu Z, Garfunkel E, He H. Small 2010; 6: 1100
- 18n Yu C.-C, Jiang K.-J, Huang J.-H, Zhang F, Bao X, Wang F.-W, Yang L.-M, Song Y. Org. Electron. 2013; 14: 445
- 19a Niko Y, Kawauchi S, Otsu S, Tokumaru K, Konishi G.-i. J. Org. Chem. 2013; 78: 3196
- 19b Kim C, Yoon J.-Y, Lee SJ, Lee HW, Kim YK, Yoon SS. J. Nanosci. Nanotechnol. 2015; 15: 5246
- 19c Zhang R, Zhao Y, Zhang T, Xu L, Ni Z. Dyes Pigm. 2016; 130: 106
- 19d Zhang R, Zhang T, Xu L, Han F, Zhao Y, Ni Z. J. Mol. Struct. 2017; 1127: 237
- 19e Gong X, Zheng C, Feng X, Huan Y, Li J, Yi M, Fu Z, Huang W, Gao D. Chem. Asian J. 2018; 13: 3920
- 19f Li D, Shao J.-Y, Li Y, Li Y, Deng L.-Y, Zhong Y.-W, Meng Q. Chem. Commun. 2018; 54: 1651
- 20 CCDC 2068244 (4a), 2068245 (4e), 2068246 (5n), and 2068247 (12c) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
For selected reviews dealing with the cross-coupling reactions, see:
For selected reviews dealing with the cross-coupling reactions, see:
For selected reviews dealing with the bidentate directing group (DG)-aided C–H functionalization/arylation, see:
For selected papers dealing with 8-aminoquinoline-aided C–H functionalization, see:
For selected papers dealing with picolinamide-aided C–H functionalization, see:
For selected articles of our group dealing with bidentate DG-aided C–H functionalization, see:
Available reports dealing with single examples of directing-group-aided C–H functionalization of pyrene core (Scheme [1]), see:
Selected reviews dealing with synthesis and application of pyrene motifs, see: