Synthesis 2021; 53(17): 3126-3136
DOI: 10.1055/a-1472-1059
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Peri-Selective Direct Acylmethylation and Amidation of Naphthalene Derivatives Using Iridium and Rhodium Catalysts

Chandrababu Naidu Kona
,
Rikuto Oku
,
Yuji Nishii
,
This work was supported by JSPS KAKENHI Grant No. JP 19K15586 (Grant-in-Aid for Young Scientists) to Y.N. and JP 17H06092 (Grant-in-Aid for Specially Promoted Research) to M.M.


Dedicated to Professor Shinji Murai for his great contribution to the chemistry of catalytic C–H bond activation.

Abstract

An iridium-catalyzed acylmethylation and a rhodium-catalyzed amidation of naphthalene derivatives are reported, adopting sulfoxonium ylides and dioxazolones as carbene and nitrene transfer agents, respectively. The use of SMe group as a directing group was key to ensure the peri-selective functionalization, and it can be easily removed or diversely transformed to other synthetically useful functionalities after the catalysis.

Supporting Information



Publication History

Received: 17 March 2021

Accepted after revision: 31 March 2021

Accepted Manuscript online:
31 March 2021

Article published online:
22 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews, see:
    • 1a Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
    • 1b Weil T, Vosch T, Hofkens J, Peneva K, Müllen K. Angew. Chem. Int. Ed. 2010; 49: 9068
    • 1c Duarte TM. F, Müllen K. Chem. Rev. 2011; 111: 7260
    • 1d Takimiya K, Shinamura S, Osaka I, Miyazaki E. Adv. Mater. 2011; 23: 4347

      For reviews, see:
    • 2a de Koning CB, Rousseau AL, van Otterlo WA. L. Tetrahedron 2003; 59: 7
    • 2b Makar S, Saha T, Singh SK. Eur. J. Med. Chem. 2019; 161: 252
    • 2c Vargas JA. M, Day DP, Burtoloso AC. B. Eur. J. Org. Chem. 2021; 741
  • 3 For a recent comprehensive review on the C–H bond functionalization, see: Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603

    • For selected recent reviews, see:
    • 4a Jia M, Ma S. Angew. Chem. Int. Ed. 2016; 55: 9134
    • 4b Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
    • 4c Zhu D, Chen L, Fan H, Yao Q, Zhu S. Chem. Soc. Rev. 2020; 49: 908
    • 4d Nunewar S, Kumar S, Talakola S, Nanduri S, Kanchupalli V. Chem. Asian J. 2021; 16: 443

      For selected recent examples of direct acylmethylation, see:
    • 6a Ji S, Yan K, Li B, Wang B. Org. Lett. 2018; 20: 5981
    • 6b You C, Pi C, Wu Y, Cui X. Adv. Synth. Catal. 2018; 360: 4068
    • 6c Xu G.-D, Huang KL, Huang Z.-Z. Adv. Synth. Catal. 2019; 361: 3318
    • 6d Nie R, Lai R, Lv S, Xu Y, Guo L, Wang Q, Wu Y. Chem. Commun. 2019; 55: 11418
    • 6e Li H, Wu C, Liu H, Wang J. J. Org. Chem. 2019; 84: 13262
    • 6f Li C, Li M, Zhong W, Jin Y, Li J, Wu W, Jiang H. Org. Lett. 2019; 21: 872
    • 6g Yu J, Wen S, Ba D, Lv W, Chen Y, Cheng G. Org. Lett. 2019; 21: 6366
    • 6h Lyu X.-L, Huang S.-S, Huang Y.-Q, Song H.-J, Liu Y.-X, Li Y.-Q, Yang S.-X, Wang Q.-M. Asian J. Org. Chem. 2021; 10: 176
    • 6i Liu X, Shao Y, Sun J. Org. Lett. 2021; 23: 1038

      For reviews, see:
    • 7a Ramirez TA, Zhao B, Shi Y. Chem. Soc. Rev. 2012; 41: 931
    • 7b Dequirez G, Pons V, Dauban P. Angew. Chem. Int. Ed. 2012; 51: 7384
    • 7c Jeffrey JL, Sarpong R. Chem. Sci. 2013; 4: 4092
    • 7d Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
    • 7e van Vliet KM, de Bruin B. ACS Catal. 2020; 10: 4751
  • 8 Park Y, Park KT, Kim JG, Chang S. J. Am. Chem. Soc. 2015; 137: 4534
  • 9 Yu S, Tang G, Li Y, Zhou X, Lan Y, Li X. Angew. Chem. Int. Ed. 2016; 55: 8696
    • 10a Shigeno M, Nishii Y, Satoh T, Miura M. Asian J. Org. Chem. 2018; 7: 1334
    • 10b Kona CN, Nishii Y, Miura M. Org. Lett. 2018; 20: 4898
    • 10c Moon S, Nishii Y, Miura M. Org. Lett. 2019; 21: 233
    • 10d Kona CN, Nishii Y, Miura M. Angew. Chem. Int. Ed. 2019; 58: 9856
    • 10e Kona CN, Nishii Y, Miura M. Org. Lett. 2020; 22: 4806
  • 11 Tang K.-X, Wang C.-M, Gao T.-H, Chen L, Fan L, Sun L.-P. Adv. Synth. Catal. 2019; 361: 26
    • 13a Yang S, Cheng R, Zhang M, Bin Z, You J. ACS Catal. 2019; 9: 6188
    • 13b Saito H, Yamamoto K, Sumiya Y, Liu L.-J, Nogi K, Maeda S, Yorimitsu H. Chem. Asian J. 2020; 15: 2442
    • 13c Sato T, Nogi K, Yorimitsu H. ChemCatChem 2020; 12: 3467
  • 14 During the course of our investigation, a similar Ir- and Rh-catalyzed amidation was reported: Xie H, Zhong M, Wang X.-T, Wu J.-Q, Cai Y.-Q, Liu J, Shu B, Che T, Zhang S.-S. Org. Chem. Front. 2021; 8: 635
  • 15 For a review, see: Rousseau G, Breit B. Angew. Chem. Int. Ed. 2011; 50: 2450
  • 16 Minami H, Otsuka S, Nogi K, Yorimitsu H. ACS Catal. 2018; 8: 579
  • 17 Zhao J.-N, Kayumov M, Wang D.-Y, Zhang A. Org. Lett. 2019; 21: 7303
    • 18a Vaitla J, Bayer A, Hopmann KH. Angew. Chem. Int. Ed. 2017; 56: 4277
    • 18b Talero AG, Martins BS, Burtoloso AC. B. Org. Lett. 2018; 20: 7206
    • 18c Zhang L, Chen J, Chen J, Jin L, Zheng X, Jiang X, Yu C. Tetrahedron Lett. 2019; 60: 1053
    • 18d Zhou B, Dong J, Xu J. Adv. Synth. Catal. 2019; 361: 4540
    • 18e Zhu S, Shi K, Zhu H, Jia Z.-K, Xia X.-F, Wang D, Zou L.-H. Org. Lett. 2020; 22: 1504
    • 19a Wang F, Wang H, Wang Q, Yu S, Li X. Org. Lett. 2016; 18: 1306
    • 19b Van Vliet KM, Polak LH, Siegler MA, Van Der Vlugt JI, Guerra CF, De Bruin B. J. Am. Chem. Soc. 2019; 141: 15240
    • 19c Lei H, Rovis T. J. Am. Chem. Soc. 2019; 141: 2268
    • 19d Shi X, Xu W, Wang R, Zeng X, Qiu H, Wang M. J. Org. Chem. 2020; 85: 3911
  • 20 CCDC 2027648 (3ea) and CCDC 2027649 (3ea-1) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 21 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
  • 22 Malapit CA, Ichiishi N, Sanford MS. Org. Lett. 2017; 19: 4142
  • 23 Yuan Y.-C, Kamaraj R, Bruneau C, Labasque T, Roisnel T, Gramage-Doria R. Org. Lett. 2017; 19: 6404