Synthesis 2021; 53(17): 3051-3056
DOI: 10.1055/a-1477-7059
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Iridium-Catalyzed Direct C–H Allylation of Ketimines

Ryota Yabe
a   Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
,
Yusuke Ebe
b   Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
,
a   Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
› Author Affiliations
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant No. JP19H02721).


Abstract

Aromatic C–H allylation of N-sulfonyl ketimines with allyl alcohol or allyl phenyl ether as an allyl source is catalyzed by a cationic iridium complex. The presence of a catalytic amount of a pyridine derivative was found to be essential for the reaction. In contrast, direct C–H allylation of ketimines derived from benzophenone derivatives and p-methoxyaniline with allyl phenyl ether proceeded in the absence of pyridine derivatives.

Supporting Information



Publication History

Received: 14 March 2021

Accepted after revision: 08 April 2021

Accepted Manuscript online:
08 April 2021

Article published online:
28 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 2 For a recent review, see: Mishra NK, Sharma S, Park J, Han S, Kim IS. ACS Catal. 2017; 7: 2821
    • 3a Oi S, Tanaka Y, Inoue Y. Organometallics 2006; 25: 4773
    • 3b Kim M, Sharma S, Mishra NK, Han S, Park J, Kim M, Shin Y, Kwak JH, Han SH, Kim IS. Chem. Commun. 2014; 50: 11303
    • 4a Achar TK, Zhang X, Mondal R, Shanavas MS, Maiti S, Maity S, Pal N, Paton RS, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 10353
    • 4b Bag SK. S, Mondal A, Jayarajan R, Dutta U, Porey S, Sunoj RB, Maiti D. J. Am. Chem. Soc. 2020; 142: 12453
    • 5a Tsai AS, Brasse M, Bergman RG, Ellman JA. Org. Lett. 2011; 13: 540
    • 5b Yu S, Li X. Org. Lett. 2014; 16: 1200
    • 5c Mei S.-T, Wang N.-J, Ouyang Q, Wei Y. Chem. Commun. 2015; 51: 2980
  • 6 Kuninobu Y, Ohta K, Takai K. Chem. Commun. 2011; 47: 10791
  • 7 Zhang YJ, Skucas E, Krische MJ. Org. Lett. 2009; 11: 4248
    • 8a Yu D.-G, Gensch T, de Azambuja F, Vasquez-Cespedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
    • 8b Gensch T, Vasquez-Cespedes S, Yu D.-G, Glorius F. Org. Lett. 2015; 17: 3714
  • 9 Liu W, Richter SC, Zhang Y, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 7747
    • 10a Cong X, Li Y, Wei Y, Zeng X. Org. Lett. 2014; 16: 3926
    • 10b Aihara Y, Wuelbern J, Chatani N. Bull. Chem. Soc. Jpn. 2015; 88: 438
    • 10c Barsu N, Kalsi D, Sundararaju B. Chem. Eur. J. 2015; 21: 9364
    • 11a Asako S, Ilies L, Nakamura E. J. Am. Chem. Soc. 2013; 135: 17755
    • 11b Asako S, Norinder J, Ilies L, Yoshikai N, Nakamura E. Adv. Synth. Catal. 2014; 356: 1481
  • 12 Yao T, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2011; 50: 2990
    • 13a Nishimura T, Ebe Y, Hayashi T. J. Am. Chem. Soc. 2013; 135: 2092
    • 13b Nagamoto M, Nishimura T. Chem. Commun. 2014; 50: 6274
    • 13c Ebe Y, Hatano M, Nishimura T. Adv. Synth. Catal. 2015; 357: 1425
  • 14 Ebe Y, Nishimura T, Onoda M, Yorimitsu H. Angew. Chem. Int. Ed. 2017; 56: 5607
  • 15 Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
  • 16 Herde JL, Lambert JC, Senoff CV. Inorg. Synth. 1974; 15: 18
  • 17 Brookhart M, Grant B, Volpe AF. Jr. Organometallics 1992; 11: 3920
  • 18 Nishimura T, Noishiki A, Tsui GC, Hayashi T. J. Am. Chem. Soc. 2012; 134: 5056
  • 19 Xu B, Troian-Gautier L, Dykstra R, Martin RT, Gutierrez O, Tambar UK. J. Am. Chem. Soc. 2020; 142: 6206
  • 20 Lahtigui O, Emmetiere F, Zhang W, Jirmo L, Toledo-Roy S, Hershberger JC, Macho JM, Grenning AJ. Angew. Chem. Int. Ed. 2016; 55: 15792
  • 21 Cheemala MN, Knochel P. Org. Lett. 2007; 9: 3089