Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(16): 2881-2888
DOI: 10.1055/a-1481-2023
DOI: 10.1055/a-1481-2023
paper
Dual Roles of TBHP-Enabled Regioselective Hydroetherification of (Trifluoromethyl)alkenes with Boronic Acids: Access to α-Trifluoromethyl β-Aryloxy Tertiary Alcohols
We thank the National Natural Science Foundation of China (21702064), the Guangdong Basic and Applied Basic Research Foundation (2020B1515020012), the Fundamental Research Funds for Central Universities (2019ZD19), the National Undergraduate Innovative and Entrepreneurial Training Program (202010561050) for financial support.

Abstract
The three-starting materials four-component reaction of (trifluoromethyl)alkenes, TBHP, and boronic acids is reported, delivering various useful α-trifluoromethyl-β-aryloxy tertiary alcohols in high yields and in an exclusively regioselective hydroetherification manner. TBHP serves as both the oxidant and nucleophile in this reaction, as well as the O-source of the products.
Key words
dual roles - fluorine - alcohol - 1,2-difunctionalization - boronic acid - (trifluoromethyl)alkene - multi-component reactionsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1481-2023.
- Supporting Information
Publication History
Received: 09 March 2021
Accepted after revision: 13 April 2021
Accepted Manuscript online:
13 April 2021
Article published online:
29 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Russo A, Lattanzi A. Synthesis 2009; 1551
- 1b Hu M, Wu W, Jiang H. ChemSusChem 2019; 12: 2911
- 1c Tang Y, Fan Y, Zhang Y, Li X, Xu X. Synlett 2016; 27: 1860
- 1d Chen Y, Ma Y, Li L, Jiang H, Li Z. Org. Lett. 2019; 21: 1480
- 1e Chen Y, Li L, Ma Y, Li Z. J. Org. Chem. 2019; 84: 5328
- 1f Zhang J, Xiao D, Tan H, Liu W. J. Org. Chem. 2020; 85: 3929
- 1g Mir BA, Rajamanicham S, Begum P, Patel BK. Eur. J. Org. Chem. 2020; 252
- 2a Xia X, Zhu S, Gu Z, Wang H, Li W, Liu X, Liang Y. J. Org. Chem. 2015; 80: 5572
- 2b Cheng J.-K, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42
- 3a Nie J, Guo H, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
- 3b Zhang G.-W, Meng W, Ma H, Nie J, Zhang W.-Q, Ma J.-A. Angew. Chem. Int. Ed. 2011; 50: 3538
- 3c Cook AM, Wolf C. Angew. Chem. Int. Ed. 2016; 55: 2929
- 3d Noda H, Amemiya F, Weidner K, Kumagai N, Shibasaki M. Chem. Sci. 2017; 8: 3260
- 3e Zheng Y, Tan Y, Harms K, Marsch M, Riedel R, Zhang L, Meggers E. J. Am. Chem. Soc. 2017; 139: 4322
- 3f Mszar NW, Mikus MS, Torker S, Haeffner F, Hoveyda AH. Angew. Chem. Int. Ed. 2017; 56: 8736
- 3g Zhu C, Zhu R, Zeng H, Chen F, Liu C, Wu W, Jiang H. Angew. Chem. Int. Ed. 2017; 56: 13324
- 3h Zhang H, Buchwald SL. J. Am. Chem. Soc. 2017; 139: 11590
- 3i Gan X, Zhang Q, Jia X, Yin L. Org. Lett. 2018; 20: 1070
- 3j Zhu C, Zeng H, Liu C, Chen F, Jiang H. Org. Lett. 2019; 21: 4900
- 3k Liu C, Zhu C, Cai Y, Jiang H. Angew. Chem. Int. Ed. 2021; 60: in press
- 4 Tian F, Yan G, Yu J. Chem. Commun. 2019; 55: 13486
- 5a Ichitsuka T, Fujita T, Ichikawa J. ACS Catal. 2015; 5: 5947
- 5b Huang Y, Hayashi T. J. Am. Chem. Soc. 2016; 138: 12340
- 5c Liu Y, Zhou Y, Zhao Y, Qu J. Org. Lett. 2017; 19: 946
- 5d Dai W, Lin Y, Wan Y, Cao S. Org. Chem. Front. 2018; 5: 55
- 5e Wang M, Pu X, Zhao Y, Wang P, Li Z, Zhu C, Shi Z. J. Am. Chem. Soc. 2018; 140: 9061
- 5f Gao P, Yuan C, Zhao Y, Shi Z. Chem 2018; 4: 2201
- 5g Sakaguchi H, Ohashi M, Ogoshi S. Angew. Chem. Int. Ed. 2018; 57: 328
- 5h Lan Y, Yang F, Wang C. ACS Catal. 2018; 8: 9245
- 5i Jang YJ, Rose D, Mirabi B, Lautens M. Angew. Chem. Int. Ed. 2018; 57: 16147
- 5j Lu X, Wang X, Gong T, Pi J, He S, Fu Y. Chem. Sci. 2019; 10: 809
- 5k Lin Z, Lan Y, Wang C. ACS Catal. 2019; 9: 775
- 5l Ding D, Lan Y, Lin Z, Wang C. Org. Lett. 2019; 21: 2723
- 5m Lin Z, Lan Y, Wang C. Org. Lett. 2019; 21: 8316
- 5n Chen F, Xu X, He Y, Huang G, Zhu S. Angew. Chem. Int. Ed. 2020; 59: 5398
- 5o Zhao X, Li C, Wang B, Cao S. Tetrahedron Lett. 2019; 60: 129
- 5p Liu Q, Zhao X, Li J, Cao S. Acta Chim. Sin. 2018; 76: 945
- 6a Xiao T, Li L, Zhou L. J. Org. Chem. 2016; 81: 7908
- 6b Lang SB, Wiles RJ, Kelly CB, Molander GA. Angew. Chem. Int. Ed. 2017; 56: 15073
- 6c Wu L.-H, Cheng J.-K, Shen L, Shen Z.-L, Loh T.-P. Adv. Synth. Catal. 2018; 360: 3894
- 6d He Y, Anand D, Sun Z, Zhou L. Org. Lett. 2019; 21: 3769
- 6e Phelan JP, Lang SB, Sim J, Berritt S, Peat AJ, Billings K, Fan L, Molander GA. J. Am. Chem. Soc. 2019; 141: 3723
- 6f Anand D, Sun Z, Zhou L. Org. Lett. 2020; 22: 2371
- 7 Zeng H, Zhu C, Liu C, Cai Y, Chen F, Jiang H. Chem. Commun. 2020; 56: 6241
- 8 Weiss M, Sulz-er-Mosse S. PCT Int. Appl WO 2018/091430 A1, 2018
- 9a Molander GA, Cavalcanti LN. J. Org. Chem. 2011; 76: 623
- 9b Zhu C, Wang R, Flack JR. Org. Lett. 2012; 14: 3494
- 9c Gogoi A, Bora U. Synlett 2012; 23: 1079
- 9d Gogoi P, Bezboruah P, Gogoi J, Boruah RC. Eur. J. Org. Chem. 2013; 7291
- 9e Chen D.-S, Huang J.-M. Synlett 2013; 24: 499
- 9f Guo S, Lu L, Cai H. Synlett 2013; 24: 1712
- 9g Chatterjee N, Goswami A. Tetrahedron Lett. 2015; 56: 1524
- 9h Molloy JJ, Clohessy TA, Irving C, Anderson NA, Lloyd-Jones GC, Watson AJ. B. Chem. Sci. 2017; 8: 1551
- 9i Weng W.-Z, Liang H, Zhang B. Org. Lett. 2018; 20: 4979
- 9j Yin W, Pan X, Leng W, Chen J, He H. Green Chem. 2019; 21: 4614
- 10a Zeng H, Zhu C, Jiang H. Org. Lett. 2019; 21: 1130
- 10b Cai Y, Zeng H, Zhu C, Liu C, Liu G, Jiang H. Org. Front. Chem. 2020; 7: 1260
- 10c Zhu C, Zeng H, Liu C, Cai Y, Fang X, Jiang H. Org. Lett. 2020; 22: 809
- 10d Zeng H, Cai Y, Jiang H, Zhu C. Org. Lett. 2021; 23: 66
- 10e Zeng H, Fang X, Yang Z, Zhu C, Jiang H. J. Org. Chem. 2021; 86: 2810
- 11 Zatolochnaya OV, Gevorgyan V. Org. Lett. 2013; 15: 2562
For reviews:
For selected examples:
For selected examples:
For selected examples:
For selected examples:
For selected examples: