Nuklearmedizin 2021; 60(05): 355-367
DOI: 10.1055/a-1486-3671
Original Article

Diagnosis and staging of hepatobiliary malignancies: Potential incremental value of (18)F-FDG-PET/MRI compared to MRI of the liver

Diagnostik und Staging von hepatobiliären Malignomen: Potenzieller Zusatznutzen von (18)F-FDG-PET/MRI im Vergleich zur MRT der Leber
Verena Carola Obmann
1   Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Switzerland
2   Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
,
Nils Grosse-Hokamp
3   Department of Diagnostic and Interventional Radiology, University Cologne, Faculty of Medicine and University Hospital Cologne, Germany
2   Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
,
Ian Alberts
4   Nuclear Medicine, Inselspital University Hospital Bern, Switzerland
,
Nicholas Fulton
5   Akron Radiology Inc., Akron, United States
,
Negin Rassouli
2   Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
,
Christopher Siegel
6   Department of General Surgery, Cleveland Clinic Foundation, Hillcrest Hospital, Mayfield Heights, United States
,
Norbert Avril
2   Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
,
Karin Anna Herrmann
2   Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
› Author Affiliations

Abstract

Objective The purpose of the study was to investigate the potential added value of 18F-FDG-PET/MRI (functional information derived from PET) over standard diagnostic liver MRI (excellent soft tissue characterization) in diagnosing and staging suspected primary hepatobiliary malignancies including extrahepatic cholangiocarcinoma (ECC), intrahepatic cholangiocellular carcinoma (ICC) and gallbladder cancer (GBCA).

Methods Twenty consecutive patients with suspected hepatobiliary malignancy were included in this retrospective study. All patients underwent combined whole-body (WB) 18F-FDG-PET/MRI including contrast-enhanced MRI of the liver, contrast-enhanced WB-MRI and WB 18F-FDG-PET. Two experienced readers staged hepatobiliary disease using TNM criteria: first based on MRI alone and then based on combined 18F-FDG-PET/MRI. Subsequently, the impact of FDG-PET/MRI on clinical management compared to MRI alone was recorded. Histopathologic proof served as the reference standard.

Results Hepatobiliary neoplasms were present in 16/20 patients (ECC n = 3, ICC n = 8, GBCA n = 5), two patients revealed benign disease, two were excluded. TNM staging with 18F-FDG-PET/MRI was identical to MRI alone in 11/18 (61.1 %) patients and correctly changed the stage in 4/18 (22.2 %), resulting in a change in management for 2/4 patients (11.1 %). 18F-FDG-PET/MRI was false-positive in 3/18 cases (16.7 %). Both MRI and 18F-FDG-PET/MRI were falsely positive in 1 case without malignancy.

Conclusions A small incremental benefit of 18F-FDG-PET/MRI over standard MRI of the liver was observed. However, in some cases 18F-FDG-PET/MRI may lead to false-positive findings. Overall there is seemingly limited role of 18F-FDG-PET/MRI in patients with suspected hepatobiliary malignancy.

Zusammenfassung

Ziel Ziel der Studie war es, den potenziellen Mehrwert der 18F-FDG-PET/MRT (funktionelle Information aus der PET) gegenüber der diagnostischen Standard-MRT der Leber (ausgezeichnete Weichteilcharakterisierung) bei der Diagnose und dem Staging bei Verdacht auf primäre hepatobiliäre Malignome einschließlich des extrahepatischen Cholangiokarzinoms (ECC), des intrahepatischen cholangiozellulären Karzinoms (ICC) und des Gallenblasenkarzinoms (GBC) zu untersuchen.

Methoden Zwanzig konsekutive Patienten mit Verdacht auf hepatobiliäre Malignität wurden in diese retrospektive Studie eingeschlossen. Alle Patienten erhielten eine kombinierte Ganzkörper (GK) -18F-FDG-PET/MRT, einschließlich kontrastverstärkter MRT der Leber, kontrastverstärkter GK-MRT und GK-18F-FDG-PET. Zwei erfahrene Auswerter führten eine Stadieneinteilung der hepatobiliären Erkrankung anhand von TNM-Kriterien durch: zuerst basierend auf der MRT allein und dann basierend auf der kombinierten 18F-FDG-PET/MRT. Anschließend wurde die Auswirkung von FDG-PET/MRT auf das klinische Management im Vergleich zur MRT allein erfasst. Der histopathologische Nachweis diente als Referenzstandard.

Ergebnisse Hepatobiliäre Neoplasmen lagen bei 16/20 Patienten vor (ECC n = 3, ICC n = 8, GBC n = 5), bei 2 Patienten zeigte sich eine benigne Erkrankung, 2 wurden ausgeschlossen. Das TNM-Staging mittels 18F-FDG-PET/MRT war bei 11/18 (61,1 %) Patienten identisch mit der alleinigen MRT. Dies führte zu einer korrekten Änderung des Stadiums bei 4/18 (22,2 %), was bei 2/4 Patienten (11,1 %) zu einer Veränderung der Behandlung führte. Die 18F-FDG-PET/MRT war in 3/18 Fällen (16,7 %) falsch positiv. Beide, MRT und 18F-FDG-PET/MRT, waren in einem Fall ohne Malignität falsch positiv.

Schlussfolgerung Es wurde ein kleiner zusätzlicher Nutzen der 18F-FDG-PET/MRT gegenüber der Standard-MRT der Leber beobachtet. In einigen Fällen kann die 18F-FDG-PET/MRT jedoch zu falsch positiven Befunden führen. Insgesamt scheint die Rolle der 18F-FDG-PET/MRT bei Patienten mit Verdacht auf hepatobiliäre Malignität begrenzt.



Publication History

Received: 19 January 2021

Accepted: 18 April 2021

Article published online:
08 June 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Riola-Parada C, Garcia-Canamaque L, Perez-Duenas V. et al. Simultaneous PET/MRI vs PET/CT in oncology. A systematic review. Revista espanola de medicina nuclear e imagen molecular 2016; 35 (05) 306-312
  • 2 Liu F, Jang H, Kijowski R. et al Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging. Radiology 2018; 286 (02) 676-684 . Epub 2017 Sep 19
  • 3 Freitag MT, Fenchel M, Baumer P. et al. Improved clinical workflow for simultaneous whole-body PET/MRI using high-resolution CAIPIRINHA-accelerated MR-based attenuation correction. European journal of radiology 2017; 96: 12-20
  • 4 Chen Y, An H. Attenuation Correction of PET/MR Imaging. Magnetic resonance imaging clinics of North America 2017; 25 (02) 245-255
  • 5 Martinez-Moller A, Nekolla SG. Attenuation correction for PET/MR: problems, novel approaches and practical solutions. Zeitschrift fur medizinische Physik 2012; 22 (04) 299-310
  • 6 Kjaer A, Torigian DA. Clinical PET/MR Imaging in Oncology: Future Perspectives. PET clinics 2016; 11 (04) 489-493
  • 7 Wehrl HF, Sauter AW, Divine MR. et al. Combined PET/MR: a technology becomes mature. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2015; 56 (02) 165-168
  • 8 Xin J, Ma Q, Guo Q. et al. PET/MRI with diagnostic MR sequences vs PET/CT in the detection of abdominal and pelvic cancer. European journal of radiology 2016; 85 (04) 751-759
  • 9 Singnurkar A, Poon R, Metser U. Comparison of 18F-FDG-PET/CT and 18F-FDG-PET/MR imaging in oncology: a systematic review. Annals of nuclear medicine 2017; 31 (05) 366-378
  • 10 Mayerhoefer ME, Prosch H, Beer L. et al. PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. European journal of nuclear medicine and molecular imaging 2020; 47 (01) 51-60
  • 11 Sarabhai T, Schaarschmidt BM, Wetter A. et al. Comparison of 18F-FDG PET/MRI and MRI for pre-therapeutic tumor staging of patients with primary cancer of the uterine cervix. Eur J Nucl Med Mol Imaging 2018; 45 (01) 67-76
  • 12 Ohliger MA, Hope TA, Chapman JS. et al. PET/MR Imaging in Gynecologic Oncology. Magnetic resonance imaging clinics of North America 2017; 25 (03) 667-684
  • 13 Wang J, Shih TT, Yen RF. Multiparametric Evaluation of Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer Using Integrated PET/MR. Clinical nuclear medicine 2017; 42 (07) 506-513
  • 14 Marner L, Henriksen OM, Lundemann M. et al. Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective. Clinical and translational imaging 2017; 5 (02) 135-149
  • 15 Varoquaux A, Rager O, Dulguerov P. et al. Diffusion-weighted and PET/MR Imaging after Radiation Therapy for Malignant Head and Neck Tumors. Radiographics: a review publication of the Radiological Society of North America, Inc 2015; 35 (05) 1502-1527
  • 16 Gholamrezanezhad A, Basques K, Batouli A. et al. Non-oncologic Applications of PET/CT and PET/MR in Musculoskeletal, Orthopedic, and Rheumatologic Imaging: General Considerations, Techniques, and Radiopharmaceuticals. J Nucl Med Technol 2017; DOI: 10.2967/jnmt.117.198663.
  • 17 Afshar-Oromieh A, Haberkorn U, Schlemmer HP. et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. European journal of nuclear medicine and molecular imaging 2014; 41 (05) 887-897
  • 18 Huellner MW, Appenzeller P, Kuhn FP. et al. Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: preliminary observations. Radiology 2014; 273 (03) 859-869
  • 19 Kirchner J, Sawicki LM, Deuschl C. et al. 18 F-FDG PET/MR imaging in patients with suspected liver lesions: Value of liver-specific contrast agent Gadobenate dimeglumine. PloS one 2017; 12 (07) e0180349
  • 20 Beiderwellen K, Geraldo L, Ruhlmann V. et al. Accuracy of [18F]FDG PET/MRI for the Detection of Liver Metastases. PloS one 2015; 10 (09) e0137285
  • 21 Chen BB, Tien YW, Chang MC. et al. PET/MRI in pancreatic and periampullary cancer: correlating diffusion-weighted imaging, MR spectroscopy and glucose metabolic activity with clinical stage and prognosis. European journal of nuclear medicine and molecular imaging 2016; 43 (10) 1753-1764
  • 22 Kong E, Chun KA, Cho IH. Quantitative assessment of simultaneous F-18 FDG PET/MRI in patients with various types of hepatic tumors: Correlation between glucose metabolism and apparent diffusion coefficient. PloS one 2017; 12 (07) e0180184
  • 23 Çelebi F, Yaghouti K, Cindil E. et al. The Role of 18F-FDG PET/MRI in the Assessment of Primary Intrahepatic Neoplasms. Acad Radiol 2021; 28 (02) 189-198 DOI: 10.1016/j.acra.2020.01.026. . Epub 2020 Feb 25
  • 24 Ferrone C, Goyal L, Qadan M. et al. Management implications of fluorodeoxyglucose positron emission tomography/magnetic resonance in untreated intrahepatic cholangiocarcinoma. European journal of nuclear medicine and molecular imaging 2020; 47 (08) 1871-1884
  • 25 Lee Y, Yoo IR, Boo SH. et al. The Role of F-18 FDG PET/CT in Intrahepatic Cholangiocarcinoma. Nuclear medicine and molecular imaging 2017; 51 (01) 69-78
  • 26 Lan BY, Kwee SA, Wong LL. Positron Emission Tomography (PET) in Hepatobiliary and Pancreatic Malignancies – A Review. American journal of surgery 2012; 204 (02) 232-241
  • 27 Ruys AT, Bennink RJ, van Westreenen HL. et al. FDG-positron emission tomography/computed tomography and standardized uptake value in the primary diagnosis and staging of hilar cholangiocarcinoma. HPB: the official journal of the International Hepato Pancreato Biliary Association 2011; 13 (04) 256-262
  • 28 Olthof SC, Othman A, Clasen S. et al. Imaging of Cholangiocarcinoma. Visceral medicine 2016; 32 (06) 402-410
  • 29 Hwang J, Kim YK, Choi D. et al. Gadoxetic acid-enhanced MRI for T-staging of gallbladder carcinoma: emphasis on liver invasion. The British journal of radiology 2014; 87: 20130608
  • 30 Jhaveri KS, Hosseini-Nik H. MRI of cholangiocarcinoma. Journal of Magnetic Resonance Imaging 2015; 42 (05) 1165-1179
  • 31 Taron J, Johannink J, Bitzer M. et al. Added value of diffusion-weighted imaging in hepatic tumors and its impact on patient management. Cancer imaging: the official publication of the International Cancer Imaging Society 2018; 18 (01) 10
  • 32 Zaidi H, Ojha N, Morich M. et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Physics in medicine and biology 2011; 56 (10) 3091-3106
  • 33 Kalemis A, Delattre BMA, Heinzer S. Sequential whole-body PET/MR scanner: concept, clinical use, and optimisation after two years in the clinic. The manufacturer’s perspective. Magnetic Resonance Materials in Physics, Biology and Medicine (journal article) 2013; 26 (01) 5-23
  • 34 Cohen JF, Korevaar DA, Altman DG. et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 2016; 6 (11) e012799
  • 35 Jiang L, Tan H, Panje CM. et al. Role of 18F-FDG PET/CT Imaging in Intrahepatic Cholangiocarcinoma. Clinical nuclear medicine 2016; 41 (01) 1-7
  • 36 Petrowsky H, Wildbrett P, Husarik DB. et al. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. Journal of hepatology 2006; 45 (01) 43-50
  • 37 Anderson CD, Rice MH, Pinson CW. et al. Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. Journal of Gastrointestinal Surgery (journal article) 2004; 8 (01) 90-97
  • 38 Leung U, Pandit-Taskar N, Corvera CU. et al. Impact of pre-operative positron emission tomography in gallbladder cancer. HPB: the official journal of the International Hepato Pancreato Biliary Association 2014; 16 (11) 1023-1030
  • 39 Corvera CU, Blumgart LH, Akhurst T. et al. 18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. Journal of the American College of Surgeons 2008; 206 (01) 57-65
  • 40 Kim JY, Kim MH, Lee TY. et al. Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol 2008; 103 (05) 1145-1151
  • 41 Graff AE, Lewis SL, Bear JR. et al. Gallbladder Carcinoma, the Difficulty of Early Detection: A Case Report. Cureus 2016; 8 (02) e493
  • 42 Maplanka C. Gallbladder cancer, treatment failure and relapses: the peritoneum in gallbladder cancer. Journal of gastrointestinal cancer 2014; 45 (03) 245-255
  • 43 Albazaz R, Patel CN, Chowdhury FU. et al. Clinical impact of FDG PET-CT on management decisions for patients with primary biliary tumours. Insights into imaging 2013; 4 (05) 691-700
  • 44 Yamada I, Ajiki T, Ueno K. et al. Feasibility of (18)F-fluorodeoxyglucose positron-emission tomography for preoperative evaluation of biliary tract cancer. Anticancer research 2012; 32 (11) 5105-5110
  • 45 Lee Z. [(18)F]-choline PET/CT as an imaging biomarker for primary liver cancers. Transl Cancer Res 2016; 5 (Suppl. 07) S1489-S1492
  • 46 Talbot J-N, Michaud L, Grange J-D. et al. Use of choline PET for studying hepatocellular carcinoma. Clinical and translational imaging 2014; 2 (02) 103-113
  • 47 Giesel FL, Kratochwil C, Lindner T. et al. (68)Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2019; 60 (03) 386-392
  • 48 Jadvar H, Colletti PM. Competitive advantage of PET/MRI. European journal of radiology 2014; 83 (01) 84-94
  • 49 Schramm G, Langner J, Hofheinz F. et al. Quantitative accuracy of attenuation correction in the Philips Ingenuity TF whole-body PET/MR system: a direct comparison with transmission-based attenuation correction. Magma (New York, NY) 2013; 26 (01) 115-126
  • 50 Kershah S, Partovi S, Traughber BJ. et al. Comparison of standardized uptake values in normal structures between PET/CT and PET/MRI in an oncology patient population. Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging 2013; 15 (06) 776-785
  • 51 Partovi S, Kohan A, Vercher-Conejero JL. et al. Qualitative and quantitative performance of (1)(8)F-FDG-PET/MRI versus (1)(8)F-FDG-PET/CT in patients with head and neck cancer. AJNR American journal of neuroradiology 2014; 35 (10) 1970-1975