Subscribe to RSS
DOI: 10.1055/a-1486-7148
Prediction of Spontaneous Preterm Birth in At-risk Women Using Thrombospondin 1 from Cervicovaginal Fluid: A Prospective Observational Study
Thrombospondin 1 im Zervikovaginalsekret als Prädiktor einer spontanen Frühgeburt bei Frauen mit erhöhtem Risiko: eine prospektive ObservationsstudieAbstract
Introduction Thrombospondin 1, desmoplakin and stratifin are putative biomarkers for the prediction of preterm birth. This study aimed to validate the predictive capability of these biomarkers in patients at risk of preterm birth.
Materials and Methods We included 109 women with symptoms of threatened spontaneous preterm birth between weeks 20 0/7 and 31 6/7 of gestation. Inclusion criteria were uterine contractions, cervical length of less than 25 mm, or a personal history of spontaneous preterm birth. Multiple gestations were also included. Samples of cervicovaginal fluid were taken before performing a digital examination and transvaginal ultrasound. Levels of cervicovaginal thrombospondin 1, desmoplakin and stratifin were quantified by enzyme-linked immunosorbent assays. The primary endpoint was spontaneous preterm birth before 34 + 0 weeks of gestation.
Results Sixteen women (14.7%) delivered before 34 + 0 weeks. Median levels of thrombospondin 1 were higher in samples where birth occurred before 34 weeks vs. ≥ 34 weeks of gestation (4904 vs. 469 pg/mL, p < 0.001). Receiver operator characteristics analysis resulted in an area under the curve of 0.86 (p < 0.0001). At an optimal cut-off value of 2163 pg/mL, sensitivity, specificity, positive predictive value and negative predictive value were 0.94, 0.77, 0.42 and 0.99, respectively, with an adjusted odds ratio of 32.9 (95% CI: 3.1 – 345, p = 0.004). Multiple gestation, cervical length, and preterm labor had no impact on the results. Survival analysis revealed a predictive period of more than eight weeks. Levels of desmoplakin and stratifin did not differ between groups.
Conclusion Thrombospondin 1 allowed long-term risk estimation of spontaneous preterm birth.
Zusammenfassung
Einleitung Thrombospondin 1, Desmoplakin und Stratifin sind putative Biomarker für die Vorhersage einer Frühgeburt. Ziel dieser Studie war es, das prädiktive Potenzial dieser Biomarker in Patientinnen mit erhöhtem Frühgeburtenrisiko zu überprüfen.
Material und Methoden Insgesamt wurden 109 Frauen mit Symptomen einer drohenden spontanen Frühgeburt im Zeitraum zwischen 20 0/7 und 31 6/7 SSW in die Studie aufgenommen. Einschlusskriterien waren uterine Kontraktionen, eine Zervixlänge von weniger als 25 mm oder spontane Frühgeburt in der Anamnese. Mehrlingsschwangerschaften wurden auch eingeschlossen. Es wurde ein zervikovaginaler Abstrich entnommen, gefolgt von einer manuellen und einer Ultraschalluntersuchung. Die zervikovaginalen Konzentrationen von Thrombospondin 1, Desmoplakin und Stratifin wurden mithilfe von ELISA quantifiziert. Der primäre Endpunkt war eine spontane Frühgeburt vor 34 + 0 SSW.
Ergebnisse Bei 16 Frauen (14,7%) kam es vor 34 + 0 SSW zur Entbindung. Die mittleren Thrombospondin-1-Konzentrationen waren höher in den Proben, bei denen die Geburt unter 34 SSW stattfand, verglichen mit einer Geburt ≥ 34 SSW (4904 vs. 469 pg/ml, p < 0,001). Die ROC-Analyse ergab eine AUC von 0,86 (p < 0,0001). Für den optimalen Cut-off von 2163 pg/ml betrugen die Sensitivität, Spezifität sowie der positive und negative prädiktive Wert jeweils 0,94, 0,77, 0,42 und 0,99 bei einer adjustierten Odds Ratio von 32,9 (95%-KI 3,1 – 345, p = 0,004). Mehrlingsschwangerschaft, Zervixlänge und vorzeitige Wehen hatten keinen Einfluss auf die Ergebnisse. Bei der Überlebensanalyse zeigte sich ein prädiktiver Zeitraum von mehr als 8 Wochen. Es gab keine Unterschiede zwischen den Gruppen hinsichtlich der Desmoplakin- und Stratifin-Konzentrationen.
Schlussfolgerung Thrombospondin 1 erlaubt die langfristige Risikoabschätzung für eine spontane Frühgeburt.
Key words
biomarker - cervical length - desmoplakin - preterm birth - preterm labor - stratifin - test characteristics - thrombospondin 1Schlüsselwörter
Biomarker - Zervixlänge - Desmoplakin - Frühgeburt - vorzeitige Wehen - Stratifin - Testcharakteristika - Thrombospondin-1Supporting Information
- Table S1
ELISA assays used for protein quantification in CVF with coefficients of variability (CV) and detection limits.
Publication History
Received: 04 December 2020
Accepted after revision: 16 April 2021
Article published online:
13 September 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Chawanpaiboon S, Vogel JP, Moller AB. et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health 2019; 7: e37-e46
- 2 Euro-Peristat Project. European Perinatal Health Report. Core indicators of the health and care of pregnant women and babies in Europe in 2015. November 2018. Accessed April 01, 2021 at: http://www.europeristat.com
- 3 Goldenberg RL, Culhane JF, Iams JD. et al. Epidemiology and causes of preterm birth. Lancet 2008; 371: 75-84
- 4 Iams JD, Newman RB, Thom EA. et al. Frequency of uterine contractions and the risk of spontaneous preterm delivery. N Engl J Med 2002; 346: 250-255
- 5 Copper RL, Goldenberg RL, Dubard MB. et al. Cervical examination and tocodynamometry at 28 weeksʼ gestation: prediction of spontaneous preterm birth. Am J Obstet Gynecol 1995; 172: 666-671
- 6 Tsoi E, Fuchs IB, Rane S. et al. Sonographic measurement of cervical length in threatened preterm labor in singleton pregnancies with intact membranes. Ultrasound Obstet Gynecol 2005; 25: 353-356
- 7 Hufnagel S. Zur Variabilität der Rate Neugeborener mit niedrigem Geburtsgewicht, der Frühgeborenenrate sowie der Hypotrophie- und Hypertrophierate Neugeborener unter Berücksichtigung biologischer Merkmale der Mutter. Analyse des Neugeborenenkollektivs der Jahre 1995 – 2000 der Bundesrepublik Deutschland [Dissertation]. Rostock, Germany: University of Rostock; 2008 Accessed April 01 2021 at: http://rosdok.uni-rostock.de/file/rosdok_derivate_000000003962/Dissertation_Hufnagel_2009.pdf
- 8 Iams JD, Romero R, Culhane JF. et al. Primary, secondary, and tertiary interventions to reduce the morbidity and mortality of preterm birth. Lancet 2008; 371: 164-175
- 9 Roos C, Spaanderman ME, Schuit E. et al. Effect of maintenance tocolysis with nifedipine in threatened preterm labor on perinatal outcomes: a randomized controlled trial. JAMA 2013; 309: 41-47
- 10 Grobman WA, Lai Y, Iams JD. et al. Prediction of Spontaneous Preterm Birth Among Nulliparous Women With a Short Cervix. J Ultrasound Med 2016; 35: 1293-1297
- 11 Pinton A, Severac F, Meyer N. et al. A comparison of vaginal ultrasound and digital examination in predicting preterm delivery in women with threatened preterm labor: a cohort study. Acta Obstet Gynecol Scand 2017; 96: 447-453
- 12 Gomez R, Galasso M, Romero R. et al. Ultrasonographic examination of the uterine cervix is better than cervical digital examination as a predictor of the likelihood of premature delivery in patients with preterm labor and intact membranes. Am J Obstet Gynecol 1994; 171: 956-964
- 13 Sotiriadis A, Papatheodorou S, Kavvadias A. et al. Transvaginal cervical length measurement for prediction of preterm birth in women with threatened preterm labor: a meta-analysis. Ultrasound Obstet Gynecol 2010; 35: 54-64
- 14 Kuusela P, Wennerholm UB, Fadl H. et al. Second trimester cervical length measurements with transvaginal ultrasound: A prospective observational agreement and reliability study. Acta Obstet Gynecol Scand 2020; 99: 1476-1485
- 15 Heng YJ, Liong S, Permezel M. et al. Human cervicovaginal fluid biomarkers to predict term and preterm labor. Front Physiol 2015; 6: 151
- 16 Lee SE, Park JS, Norwitz ER. et al. Measurement of placental alpha-microglobulin-1 in cervicovaginal discharge to diagnose rupture of membranes. Obstet Gynecol 2007; 109: 634-640
- 17 Westwood M, Gibson JM, Davies AJ. et al. The phosphorylation pattern of insulin-like growth factor-binding protein-1 in normal plasma is different from that in amniotic fluid and changes during pregnancy. J Clin Endocrinol Metab 1994; 79: 1735-1741
- 18 Sadovsky Y, Friedman SA. Fetal fibronectin and preterm labor. N Engl J Med 1992; 326: 709
- 19 Sibille Y, Lwebuga-Mukasa JS, Polomski L. et al. An in vitro model for polymorphonuclear-leukocyte-induced injury to an extracellular matrix. Relative contribution of oxidants and elastase to fibronectin release from amnionic membranes. Am Rev Respir Dis 1986; 134: 134-140
- 20 Rutanen EM, Koistinen R, Wahlstrom T. et al. Synthesis of placental protein 12 by human decidua. Endocrinology 1985; 116: 1304-1309
- 21 Petrunin DD, Griaznova IM, Petrunina IuA. et al. [Immunochemical identification of organ specific human placental alphal-globulin and its concentration in amniotic fluid]. Akush Ginekol (Mosk) 1977; (01) 62-64
- 22 Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science 2014; 345: 760-765
- 23 Boots AB, Sanchez-Ramos L, Bowers DM. et al. The short-term prediction of preterm birth: a systematic review and diagnostic metaanalysis. Am J Obstet Gynecol 2014; 210: 54.e1-54.e10
- 24 Melchor JC, Khalil A, Wing D. et al. Prediction of preterm delivery in symptomatic women using PAMG-1, fetal fibronectin and phIGFBP-1 tests: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2018; 52: 442-451
- 25 Berghella V, Saccone G. Fetal fibronectin testing for reducing the risk of preterm birth. Cochrane Database Syst Rev 2019; (07) CD006843
- 26 Shah SJ, Yu KH, Sangar V. et al. Identification and quantification of preterm birth biomarkers in human cervicovaginal fluid by liquid chromatography/tandem mass spectrometry. J Proteome Res 2009; 8: 2407-2417
- 27 Langnickel D. Intensive Überwachung der Schwangerschaft mittels Vorsorgekarte. Dtsch Arztebl 1980; 77: A-1849
- 28 Zhao C, Isenberg JS, Popel AS. Human expression patterns: qualitative and quantitative analysis of thrombospondin-1 under physiological and pathological conditions. J Cell Mol Med 2018; 22: 2086-2097
- 29 [Anonymous] Atlas of Genetics and Cytogenetics in Oncology and Haematology. Accessed May 24, 2021 at: http://atlasgeneticsoncology.org/Genes/GC_THBS1.html
- 30 Peng HH, Kao CC, Chang SD. et al. The effects of labor on differential gene expression in parturient women, placentas, and fetuses at term pregnancy. Kaohsiung J Med Sci 2011; 27: 494-502
- 31 Cindrova-Davies T, Yung HW, Johns J. et al. Oxidative stress, gene expression, and protein changes induced in the human placenta during labor. Am J Pathol 2007; 171: 1168-1179
- 32 Chim SS, Lee WS, Ting YH. et al. Systematic identification of spontaneous preterm birth-associated RNA transcripts in maternal plasma. PLoS One 2012; 7: e34328
- 33 Havelock JC, Keller P, Muleba N. et al. Human myometrial gene expression before and during parturition. Biol Reprod 2005; 72: 707-719
- 34 Morimoto T, Head JR, MacDonald PC. et al. Thrombospondin-1 expression in human myometrium before and during pregnancy, before and during labor, and in human myometrial cells in culture. Biol Reprod 1998; 59: 862-870
- 35 Hassan SS, Romero R, Haddad R. et al. The transcriptome of the uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol 2006; 195: 778-786
- 36 Hassan SS, Romero R, Tarca AL. et al. The transcriptome of cervical ripening in human pregnancy before the onset of labor at term: identification of novel molecular functions involved in this process. J Matern Fetal Neonatal Med 2009; 22: 1183-1193
- 37 Isani G, Ferlizza E, Cuoghi A. et al. Identification of the most abundant proteins in equine amniotic fluid by a proteomic approach. Anim Reprod Sci 2016; 174: 150-160
- 38 Wu WX, Zhang Q, Ma XH. et al. Suppression subtractive hybridization identified a marked increase in thrombospondin-1 associated with parturition in pregnant sheep myometrium. Endocrinology 1999; 140: 2364-2371
- 39 Haddad R, Romero R, Gould BR. et al. Angiogenesis gene expression in mouse uterus during the common pathway of parturition. Am J Obstet Gynecol 2008; 198: 539.e1-539.e8
- 40 Parry S, Leite R, Esplin MS. et al. Cervicovaginal fluid proteomic analysis to identify potential biomarkers for preterm birth. Am J Obstet Gynecol 2020; 222: 493.e1-493.e13
- 41 Pirjani R, Moini A, Almasi-Hashiani A. et al. Placental alpha microglobulin-1 (PartoSure) test for the prediction of preterm birth: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2019;
- 42 Conde-Agudelo A, Romero R. Cervical phosphorylated insulin-like growth factor binding protein-1 test for the prediction of preterm birth: a systematic review and metaanalysis. Am J Obstet Gynecol 2016; 214: 57-73
- 43 Wing DA, Haeri S, Silber AC. et al. Placental Alpha Microglobulin-1 Compared With Fetal Fibronectin to Predict Preterm Delivery in Symptomatic Women. Obstet Gynecol 2017; 130: 1183-1191
- 44 Melchor JC, Navas H, Marcos M. et al. Predictive performance of PAMG-1 vs. fFN test for risk of spontaneous preterm birth in symptomatic women attending an emergency obstetric unit: retrospective cohort study. Ultrasound Obstet Gynecol 2018; 51: 644-649
- 45 Dawes LK, Prentice LR, Huang Y. et al. The Biomarkers for Preterm Birth Study-A prospective observational study comparing the impact of vaginal biomarkers on clinical practice when used in women with symptoms of preterm labor. Acta Obstet Gynecol Scand 2020; 99: 249-258