Klin Monbl Augenheilkd 2021; 238(06): 680-687
DOI: 10.1055/a-1498-1846
Klinische Studie

Semiquantitative Criteria in the Eye Bank That Correlate with Cornea Guttata in Donor Corneas

Semiquantitative Kriterien in der Hornhautbank korrelieren mit Cornea guttata in Spenderhornhäuten
1   Department of Ophthalmology, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
,
Loay Daas
1   Department of Ophthalmology, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
,
Gian-Luca Kiefer
2   Department of Cognitive Assistants, German Research Centre for Artificial Intelligence Saarbrucken Branch, Saarbrucken, Germany
,
Mansi Sharma
2   Department of Cognitive Assistants, German Research Centre for Artificial Intelligence Saarbrucken Branch, Saarbrucken, Germany
,
Alassane Ndiaye
2   Department of Cognitive Assistants, German Research Centre for Artificial Intelligence Saarbrucken Branch, Saarbrucken, Germany
,
Matthieu Deru
2   Department of Cognitive Assistants, German Research Centre for Artificial Intelligence Saarbrucken Branch, Saarbrucken, Germany
,
Jan Alexandersson
2   Department of Cognitive Assistants, German Research Centre for Artificial Intelligence Saarbrucken Branch, Saarbrucken, Germany
,
1   Department of Ophthalmology, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
› Institutsangaben

Abstract

Background Cornea guttata may not be recognized in the eye bank and recent studies have displayed that guttae are transplanted in about 15% of cases in varying severities. The purpose of this study was to establish semiquantitative criteria for the detection of cornea guttata in donor corneas in the eye bank.

Methods In this retrospective cohort study, preoperative endothelial pictures of donor corneas were collected and classified according to the post-penetrating keratoplasty cornea guttata grade into three distinct groups: group 1 consists of healthy corneas with no guttae (guttata grade 0); group 2 constitutes corneas with mild asymptomatic cornea guttata (guttata grade +); and group 3 comprises corneas with advanced widespread cornea guttata (guttata grade ++/+++/++++). The preoperative pictures of each group were then individually analyzed using the following five semiquantitative criteria: The number and the area of the cell-depleted surfaces, the presence of less than 50% of the cells having a hexagonal or a circular shape, the presence of cell membrane defects and interruptions, the presence of blebs in the cell membrane, and the presence of groups of cells with a distinct whitish color.

Results In total, 262 patients were included in this study, with a total number of 1582 preoperative donor corneal endothelial pictures. Out of those pictures, groups 1, 2, and 3 encompassed 995 (62.9%), 411 (26.0%), and 176 (11.1%) pictures, respectively. Three out of the five eye bank criteria were found to correlate with postoperative cornea guttata with a highly significant p value of < 0.001. These three criteria are the presence of less than 50% of the cells having a hexagonal or a circular shape, the presence of cell membrane defects and interruptions and, the presence of blebs. The presence of groups of cells with a distinct whitish color was only a weak predictive factor for cornea guttata (p = 0.069). There was no statistically significant correlation between the number and the area of cell-depleted surfaces and postoperative cornea guttata with a p = 0.181.

Conclusion Three semiquantitative criteria that can be detected in the eye bank using inverted light microscopy seem to correlate with postoperative cornea guttata: The presence of blebs, the presence of cell membrane defects and interruptions, as well as endothelial pictures with less than 50% of the cells having a hexagonal of circular shape. The presence of groups of cells with a distinct whitish color appears to be a weak predictor of cornea guttata.

Zusammenfassung

Hintergrund Cornea guttata wird in der Hornhautbank möglicherweise nicht erkannt und neuere Studien haben gezeigt, dass Cornea guttata in etwa 15% der Fälle in unterschiedlichen Schweregraden transplantiert werden. Ziel dieser Studie war es, semiquantitative Kriterien für den Nachweis von Cornea guttata in Spenderhornhäuten in der Hornhautbank zu etablieren.

Methoden In dieser retrospektiven Kohortenstudie wurden präoperative Endothelbilder von Spenderhornhäuten gesammelt und entsprechend dem Grad der Cornea guttata nach perforierender Keratoplastik in 3 verschiedene Gruppen eingeteilt: Gruppe 1 besteht aus gesunden Hornhäuten ohne Cornea guttata (Cornea-guttata-Grad 0), Gruppe 2 aus Hornhäuten mit leichter, asymptomatischer Cornea guttata (Cornea-guttata-Grad +) und Gruppe 3 umfasst Hornhäute mit fortgeschrittener, ausgedehnter Cornea guttata (Cornea-guttata-Grad ++/+++/++++). Die präoperativen Bilder jeder Gruppe wurden dann einzeln anhand der folgenden 5 semiquantitativen Kriterien analysiert: die Anzahl und die Fläche der zelldepletierten Flächen, das Vorhandensein von weniger als 50% der Zellen, die eine hexagonale oder kreisförmige Form haben, das Vorhandensein von Zellmembrandefekten und -unterbrechungen, das Vorhandensein von Blebs in der Zellmembran und das Vorhandensein von Zellgruppen mit einer deutlichen weißlichen Farbe.

Ergebnisse Insgesamt wurden 262 Patienten in diese Studie eingeschlossen, mit einer Gesamtzahl von 1582 präoperativen Spenderhornhaut-Endothelbildern. Von diesen Bildern umfassten die Gruppen 1, 2 und 3 jeweils 995 (62,9%), 411 (26,0%) und 176 (11,1%) Bilder. Es wurde festgestellt, dass 3 der 5 Kriterien der Hornhautbank mit postoperativen Cornea guttata mit einem hochsignifikanten p-Wert von < 0,001 korreliert sind. Diese 3 Kriterien sind: das Vorhandensein von weniger als 50% der Zellen, die eine hexagonale oder kreisförmige Form haben, das Vorhandensein von Zellmembrandefekten und -unterbrechungen und das Vorhandensein von Blebs. Das Vorhandensein einer Gruppe von Zellen mit einer deutlichen weißlichen Farbe war nur ein schwacher prädiktiver Faktor für Cornea guttata (p = 0,069). Es bestand kein statistisch signifikanter Zusammenhang zwischen der Anzahl und der Fläche der zelldepletierten Flächen und der postoperativen Cornea guttata mit p = 0,181.

Schlussfolgerung Drei semiquantitative Kriterien, die in der Hornhautbank mittels inverser Lichtmikroskopie detektiert werden können, scheinen mit postoperativer Cornea guttata zu korrelieren: das Vorhandensein von Blebs, das Vorhandensein von Zellmembrandefekten und -unterbrechungen sowie Endothelbilder, bei denen weniger als 50% der Zellen eine hexagonale oder zirkuläre Form aufweisen. Das Vorhandensein von Zellgruppen mit einer deutlichen weißlichen Farbe scheint ein schwacher Prädiktor für Cornea guttata zu sein.



Publikationsverlauf

Eingereicht: 28. Januar 2021

Angenommen: 28. April 2021

Artikel online veröffentlicht:
22. Juni 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Flockerzi E, Maier P, Böhringer D. et al. Trends in Corneal Transplantation from 2001 to 2016 in Germany: A Report of the DOG-Section Cornea and its Keratoplasty Registry. Am J Ophthalmol 2018; 188: 91-98
  • 2 Rajesh S, Noopur G, Namrata S. et al. Advances in keratoplasty procedures: A review. Indian J Ophthalmol 2010; 58: 457-463
  • 3 Seitz B, El-Husseiny M, Langenbucher A. et al. Prophylaxe und Management von Komplikationen bei perforierender Keratoplastik. Ophthalmologe 2013; 110: 605-613
  • 4 Giasson CJ, Solomon LD, Polse KA. Morphometry of corneal endothelium in patients with corneal guttata. Ophthalmology 2007; 114: 1469-1475
  • 5 Waring 3rd GO, Rodrigues MM, Laibson PR. Corneal dystrophies. II. Endothelial dystrophies. Surv Ophthalmol 1978; 23: 147-168
  • 6 Adamis AP, Filatov V, Tripathi BJ. et al. Fuchsʼ endothelial dystrophy of the cornea. Surv Ophthalmol 1993; 38: 149-168
  • 7 Weiss JS, Møller HU, Aldave AJ. et al. IC3D classification of corneal dystrophies – edition 2. Cornea 2015; 34: 117-159
  • 8 Zoega GM, Fujisawa A, Sasaki H. et al. Prevalence and risk factors for cornea guttata in the Reykjavik Eye Study. Ophthalmology 2006; 113: 565-569
  • 9 Zoega GM, Arnarsson A, Sasaki H. et al. The 7-year cumulative incidence of cornea guttata and morphological changes in the corneal endothelium in the Reykjavik Eye Study. Acta Ophthalmol 2013; 91: 212-218
  • 10 Nahum Y, Canton V, Ponzin D. et al. Prevalence of guttae in the graft following corneal transplantation. Br J Ophthalmol 2015; 99: 1660-1663
  • 11 Kitagawa K, Fujisawa A, Mizuno T. et al. Twenty-three cases of primary cornea guttata. Jpn J Ophthalmol 2001; 45: 93-98
  • 12 Eghrari AO, Gottsch JD. Fuchsʼ corneal dystrophy. Expert Rev Ophthalmol 2010; 5: 147-159
  • 13 Borderie VM, Sabolic V, Touzeau O. et al. Screening human donor corneas during organ culture for the presence of guttae. Br J Ophthalmol 2001; 85: 272-276
  • 14 Seitz B, Müller EE, Langenbucher A. et al. [Reproducibility and validity of a new automatic method of specular microscopy analysis of corneal endothelium]. Ophthalmologe 1997; 94: 127-135
  • 15 Seitz B, Müller EE, Langenbucher A. et al. [Endothelial keratopathy in pseudoexfoliation syndrome: quantitative and qualitative morphometry using automated video image analysis]. Klin Monbl Augenheilkd 1995; 207: 167-175
  • 16 Blüthner K, Seitz B, Müller EE. et al. Reliability of automated endothelial cell analysis in cornea guttata. Invest Ophthalmol Vis Sci 1996; 37 (Suppl. 04) S703
  • 17 Huang J, Tepelus TC, Baghdasaryan E. et al. Correlation between guttata severity and thickness of Descemetʼs membrane and the central cornea. Curr Eye Res 2019; 44: 849-855
  • 18 Safi T, Daas L, Seitz B. Preoperative guttae screening of the donor corneas. eLetter. Br J Ophthalmol; 2020 URL: https://bjo.bmj.com/content/99/12/1660.responses
  • 19 Brooks AM, Grant G, Gillies WE. The preoperative assessment of the corneal endothelium. Aust N Z J Ophthalmol 1988; 16: 309-316
  • 20 Bigar F, Schimmelpfennig B, Hürzeler R. Cornea guttata in donor material. Arch Ophthalmol 1978; 96: 653-655
  • 21 Schroeter J, Rieck P. Endothelial evaluation in the cornea bank. Dev Ophthalmol 2009; 43: 47-62
  • 22 Hermel M, Salla S, Fuest M. et al. The role of corneal endothelial morphology in graft assessment and prediction of endothelial cell loss during organ culture of human donor corneas. Acta Ophthalmol 2017; 95: 205-210
  • 23 Sheng H, Bullimore MA. Factors affecting corneal endothelial morphology. Cornea 2007; 26: 520-525
  • 24 Kanavi MR, Javadi MA, Chamani T. Specular microscopic features of corneal endothelial vacuolation. J Ophthalmic Vis Res 2011; 6: 5-7
  • 25 Menzel-Severing J, Walter P, Plum WJ. et al. Assessment of corneal endothelium during continued organ culture of pre-stripped human donor tissue for DMEK surgery. Curr Eye Res 2018; 43: 1439-1444
  • 26 Safi T, Seitz B, Berg K. et al. Reproducibility of non-invasive endothelial cell loss assessment of the pre-stripped DMEK roll after preparation and storage. Am J Ophthalmol 2021; 221: 17-26
  • 27 Laun D, Suffo S, Kramp K. et al. [Impact of the introduction of the Quality Management System (according to DIN EN ISO 9001: 2008) on the rate and reasons for discarding human organ-cultured corneas at the LIONS eye bank Saar-Lor-Lux, Trier/Westpfalz from 2006 to 2016]. Klin Monbl Augenheilkd 2021;
  • 28 Kramp K, Suffo S, Laun D. et al. [Analysis of factors influencing the suitability of donor corneas in the LIONS cornea bank Saar-Lor-Lux, Trier/Westpfalz from 2006 to 2016]. Klin Monbl Augenheilkd 2020; 237: 1334-1342
  • 29 Quintin A, Hamon L, Mäurer S. et al. [Comparison of sterile donor tomography in the eye bank and graft tomography after penetrating keratoplasty]. Ophthalmologe 2020;
  • 30 Mäurer S, Asi F, Rawer A. et al. [Concept for 3D measurement of corneal donor tissue using a clinical OCT]. Ophthalmologe 2019; 116: 640-646
  • 31 Damian A, Seitz B, Langenbucher A. et al. Optical coherence tomography-based topography determination of corneal grafts in eye bank cultivation. J Biomed Opt 2017; 22: 16001
  • 32 Janunts E, Langenbucher A, Seitz B. In Vitro Corneal Tomography of Donor Cornea Using Anterior Segment OCT. Cornea 2016; 35: 647-653
  • 33 Deru M, Ndiaye A. Deep Learning mit Tensorflow, Keras und Tensorflow.Js. 2nd ed.. ed. Bonn: Rheinwerk Computing; 2020
  • 34 Bishop C. Pattern Recognition and Machine Learning. Berlin: Springer; 2008
  • 35 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-444
  • 36 Heinzelmann S, Daniel MC, Maier PC. et al. [Automated cell counting using “Deep Learning” in donor corneas from organ culture achieves high precision and accuracy]. Klin Monbl Augenheilkd 2019; 236: 1407-1412
  • 37 Daniel MC, Atzrodt L, Bucher F. et al. Automated segmentation of the corneal endothelium in a large set of ‘real-world’ specular microscopy images using the U-Net architecture. Sci Rep 2019; 9: 4752