CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 353-361
DOI: 10.1055/a-1503-5912
Focus Issue: Supramolecular Optoelectronic Materials
Original Article

Aqueous Self-Assembly of Peptide–Diketopyrrolopyrrole Conjugates with Variation of N-Alkyl Side Chain and π-Core Lengths

a   Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
,
a   Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
b   Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
› Author Affiliations
Funding Information This research is based upon work supported by the National Science Foundation's Designing Materials to Revolutionize and Engineer our Future (DMREF) program (Grant Nos. DMR-1728947).


Abstract

Peptidic sequences when conjugated to π-electronic groups form self-assembled networks of π-electron pathways. These materials hold promise for bio-interfacing charge transporting applications because of their aqueous processability and compatibility. In this work, we incorporated diketopyrrolopyrrole (DPP), a well-established π-core for organic electronic applications, within the peptidic sequence. We embedded different numbers of thiophene rings (2 and 3) on both sides of the DPP to alter the length of the π-cores. We also varied the length of the N-alkyl side chains (methyl, butyl, hexyl) attached to the DPP core. These variations allowed us to explicitly study the effect of π-core and N-alkyl side-chain length on photophysical properties and morphology of the resulting nanomaterials. All of these molecules formed H-type aggregates in the assembled state. Longer π-cores have relatively red-shifted absorption maxima, whereas the N-alkyl variation did not present significant photophysical changes.

Supporting Information

Supporting Information for this article is available online at https://doi.org/10.1055/a-1503-5912.


Supporting Information



Publication History

Received: 31 March 2021

Accepted: 30 April 2021

Accepted Manuscript online:
08 May 2021

Article published online:
24 June 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Palmer LC, Stupp SI. Acc. Chem. Res. 2008; 41: 1674
  • 2 Gazit E. Chem. Soc. Rev. 2007; 36: 1263
  • 3 Fleming S, Ulijn RV. Chem. Soc. Rev. 2014; 43: 8150
  • 4 Hamley IW. Angew. Chem. Int. Ed. 2014; 53: 6866
  • 5 Tovar JD. Acc. Chem. Res. 2013; 46: 1527
  • 6 Panda SS, Katz HE, Tovar JD. Chem. Soc. Rev. 2018; 47: 3640
  • 7 Kas OY, Charati MB, Rothberg LJ, Galvin ME, Kiick KL. J. Mater. Chem. 2008; 18: 3847
  • 8 Matmour R, De Cat I, George SJ, Adriaens W, Leclère P, Bomans PH. H, Sommerdijk NA. J. M, Gielen JC, Christianen PC. M, Heldens JT, van Hest JC. M, Löwik DW. P. M, De Feyter S, Meijer EW, Schenning AP. H. J. J. Am. Chem. Soc. 2008; 130: 14576
  • 9 Zhou J, Du X, Gao Y, Shi J, Xu B. J. Am. Chem. Soc. 2014; 136: 2970
  • 10 Adhikari B, Nanda J, Banerjee A. Chem. Eur. J. 2011; 17: 11488
  • 11 Khalily MA, Bakan G, Kucukoz B, Topal AE, Karatay A, Yaglioglu HG, Dana A, Guler MO. ACS Nano 2017; 11: 6881
  • 12 Draper ER, Walsh JJ, McDonald TO, Zwijnenburg MA, Cameron PJ, Cowan AJ, Adams DJ. J. Mater. Chem. C 2014; 2: 5570
  • 13 Schillinger E.-K, Mena-Osteritz E, Hentschel J, Börner HG, Bäuerle P. Adv. Mater. 2009; 21: 1562
  • 14 Tsai WW, Tevis ID, Tayi AS, Cui H, Stupp SI. J. Phys. Chem. B 2010; 114: 14778
  • 15 Panda SS, Shmilovich K, Ferguson AL, Tovar JD. Langmuir 2019; 35: 14060
  • 16 Wall BD, Zacca AE, Sanders AM, Wilson WL, Ferguson AL, Tovar JD. Langmuir 2014; 30: 5946
  • 17 Lee T, Panda SS, Tovar JD, Katz HE. ACS Nano 2020; 14: 1846
  • 18 Sanders AM, Kale TS, Katz HE, Tovar JD. ACS Omega 2017; 2: 409
  • 19 Wall BD, Diegelmann SR, Zhang S, Dawidczyk TJ, Wilson WL, Katz HE, Mao HQ, Tovar JD. Adv. Mater. 2011; 23: 5009 , 4967
  • 20 Kale TS, Tovar JD. Tetrahedron 2016; 72: 6084
  • 21 Kale TS, Ardoña HA. M, Ertel A, Tovar JD. Langmuir 2019; 35: 2270
  • 22 Tamayo AB, Walker B, Nguyen T.-C. J. Phys. Chem. C 2008; 112: 11545
  • 23 Aytun T, Santos PJ, Bruns CJ, Huang D, Koltonow AR, Cruz MO. D, Stupp SI. J. Phys. Chem. C 2016; 120: 3602
  • 24 Kanimozhi C, Yaacobi-Gross N, Chou KW, Amassian A, Anthopoulos TD, Patil S. J. Am. Chem. Soc. 2012; 134: 16532
  • 25 Sonar P, Singh SP, Li Y, Soh MS, Dodabalapur A. Adv. Mater. 2010; 22: 5409
  • 26 Bijleveld JC, Zoombelt AP, Mathijssen SG. J, Wienk MM, Turbiez M, de Leeuw DM, Janssen RA. J. J. Am. Chem. Soc. 2009; 131: 16616
  • 27 Tang A, Zhan C, Yao J, Zhou E. Adv. Mater. 2017; 29: 1600013
  • 28 Iqbal A, Cassar L, Rochat AC, Pfenninger J. J. Coat.s Technol. 1988; 60: 37
  • 29 Nielsen CB, Turbiez M, McCulloch I. Adv. Mater. 2013; 25: 1859
  • 30 Ley D, Guzman CX, Adolfsson KH, Scott AM, Braunschweig AB. J. Am. Chem. Soc. 2014; 136: 7809
  • 31 Zhang X, Richter LJ, DeLongchamp DM, Kline RJ, Hammond MR, McCulloch I, Heeney M, Ashraf RS, Smith JN, Anthopoulos TD, Schroeder B, Geerts YH, Fischer DA, Toney MF. J. Am. Chem. Soc. 2011; 133: 15073
  • 32 Back JY, Yu H, Song I, Kang I, Ahn H, Shin TJ, Kwon S.-K, Oh JH, Kim Y.-H. Chem. Mater. 2015; 27: 1732
  • 33 Gruber M, Jung S.-H, Schott S, Venkateshvaran D, Kronemeijer AJ, Andreasen JW, McNeill CR, Wong WW. H, Shahid M, Heeney M, Lee J.-K, Sirringhaus H. Chem. Sci. 2015; 6: 6949
  • 34 Grzybowski M, Gryko DT. Adv. Opt. Mater. 2015; 3: 280
  • 35 Tamayo AB, Tantiwiwat M, Walker B, Nguyen T.-C. J. Phys. Chem. C 2008; 112: 15543
  • 36 Stolte M, Suraru S.-L, Diemer P, He T, Burschka C, Zschieschang U, Klauk H, Würthner F. Adv. Funct. Mater. 2016; 26: 7415
  • 37 Draper ER, Dietrich B, Adams DJ. Chem. Commun. 2017; 53: 1864
  • 38 Rani A, Kavianinia I, Hume P, De Leon-Rodriguez LM, Kihara S, Williams DE, McGillivray DJ, Plank NO. V, Gerrard J, Hodgkiss JM, Brimble MA. Soft Matter 2020; 16: 6563
  • 39 Ftouni H, Bolze F, de Rocquigny H, Nicoud J.-F. Bioconjugate Chem. 2013; 24: 942
  • 40 Ftouni H, Bolze F, Nicoud J.-F. Dyes Pigm. 2013; 97: 77
  • 41 Heyer E, Lory P, Leprince J, Moreau M, Romieu A, Guardigli M, Roda A, Ziessel R. Angew. Chem. Int. Ed. 2015; 54: 2995
  • 42 Zhang G, Li H, Bi S, Song L, Lu Y, Zhang L, Yu J, Wang L. Analyst 2013; 138: 6163
  • 43 Zhang G, Song L, Bi S, Wu Y, Yu J, Wang L. Dyes Pigm. 2014; 102: 100
  • 44 Besar K. ACS Nano 2015; 9: 12401
  • 45 Farahat M, Wei H.-Y, Ibrahem MA, Boopathi KM, Wei K.-H, Chu C.-W. RSC Adv. 2014; 4: 9401
  • 46 Szabadai RS, Roth-Barton J, Ghiggino KP, White JM, Wilson DJ. D. Aust. J. Chem. 2014; 67: 1330
  • 47 Mei J, Graham KR, Stalder R, Tiwari SP, Cheun H, Shim J, Yoshio M, Nuckolls C, Kippelen B, Castellano RK, Reynolds JR. Chem. Mater. 2011; 23: 2285
  • 48 Naik MA, Venkatramaiah N, Kanimozhi C, Patil S. J. Phys. Chem. C 2012; 116: 26128
  • 49 Kilbinger AF. M, Schenning AP. H. J, Goldoni F, Feast WJ, Meijer EW. J. Am. Chem. Soc. 2000; 122: 1820
  • 50 Sonar P, Singh SP, Li Y, Ooi Z.-E, Ha T, Wong I, Soh MS, Dodabalapur A. Energy Environ. Sci. 2011; 4: 2288
  • 51 Stas S, Sergeyev S, Geerts Y. Tetrahedron 2010; 66: 1837
  • 52 Zhou E, Wei Q, Yamakawa S, Zhang Y, Tajima K, Yang C, Hashimoto K. Macromolecules 2010; 43: 821
  • 53 Tamayo AB, Tantiwiwat M, Walker B, Nguyen T.-C. J. Phys. Chem. C 2008; 112: 15543
  • 54 Fu L, Fu W, Cheng P, Xie Z, Fan C, Shi M, Ling J, Hou J, Zhan X, Chen H. J. Mater. Chem. A 2014; 2: 6589