Synthesis 2021; 53(19): 3513-3521
DOI: 10.1055/a-1505-0916
short review

Recent Advances in Metal-Nanoparticle-Catalyzed Coupling Reactions Assisted by Microwave Irradiation

Makoto Sako
,
Mitsuhiro Arisawa
This work was partially supported by a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Nos. JP15KT00630 and JP20K15281), the Platform Project for Supporting Drug Discovery and Life Science Research [Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)] of the Japan Agency for Medical Research and Development (AMED) (Grant No. JP19am0101084), the Yazaki Memorial Foundation for Science and Technology, and the Nagase Science Technology Foundation.


Abstract

Transition-metal-catalyzed coupling reactions are among some of the most important processes in synthetic chemistry as they are reliable tools for carbon–carbon and carbon–heteroatom bond formation. This short review focuses on recent advances in microwave-assisted­ coupling reactions using transition-metal-nanoparticle catalysts.

1 Introduction

2 Microwave-Assisted Coupling Reactions in Polar Solvents

3 Microwave-Assisted Coupling Reactions in Nonpolar Solvents

4 Conclusion



Publication History

Received: 14 April 2021

Accepted after revision: 10 May 2021

Accepted Manuscript online:
10 May 2021

Article published online:
08 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews on transition-metal-catalyzed couplings, see:
    • 1a Transition Metal-Catalyzed Couplings in Process Chemistry: Case Studies from the Pharmaceutical Industry. Magano J, Dunetz JR. Wiley-VCH; Weinheim: 2013
    • 1b Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 2a Yamada M, Arisawa M. Tetrahedron Lett. 2020; 61: 151422
    • 2b Arisawa M. Chem. Pharm. Bull. 2019; 67: 733
    • 2c Biffis A, Centomo P, Zotto AD, Zecca M. Chem. Rev. 2018; 118: 2249
    • 2d Yasukawa T, Miyamura H, Kobayashi S. Chem. Soc. Rev. 2014; 43: 1450
    • 2e Wang D, Astruc D. Chem. Rev. 2014; 114: 6949
    • 2f Astruc D, Lu F, Aranzaes JR. Angew. Chem. Int. Ed. 2005; 44: 7852
    • 3a Rathi AK, Gawande MB, Zboril R, Varma RS. Coord. Chem. Rev. 2015; 291: 68
    • 3b Microwave Heating as a Tool for Sustainable Chemistry . Leadbeater NE. CRC Press; Boca Raton: 2011
    • 3c Kappe CO, Dallinger D. Mol. Diversity 2009; 13: 71
    • 3d Moseley JD, Kappe CO. Green Chem. 2011; 13: 794
    • 4a Kappe CO, Pieber B, Dallinger D. Angew. Chem. Int. Ed. 2013; 52: 1088
    • 4b Dudley GB, Stiegman AE, Rosana MR. Angew. Chem. Int. Ed. 2013; 52: 7918
    • 4c Kappe CO. Angew. Chem. Int. Ed. 2013; 52: 7924

      For recent reviews on microwave-assisted transition-metal-catalyzed­ reactions, see:
    • 5a Baqi Y. Catalysts 2021; 11: 46
    • 5b Kadu BS. Catal. Sci. Technol. 2021; 11: 1186
    • 5c Palma V, Barba D, Cortese M, Martino M, Renda S, Meloni E. Catalysts 2020; 10: 246
    • 5d Salih KS. M, Baqi Y. Catalysts 2020; 10: 4
    • 5e Liu X, Astruc D. Adv. Synth. Catal. 2018; 360: 3426
  • 6 Kokel S, Schäfer C, Török B. Green Chem. 2017; 19: 3729
  • 7 Gawande MB, Shelke SN, Zboril R, Varma RS. Acc. Chem. Res. 2014; 47: 1338
  • 8 Rodríguez AM, Prieto P, de la Hoz A, Díaz-Ortiz Á, Martín DR, García JI. ChemistryOpen 2015; 4: 308
  • 9 Zhang J, Bai X. Open Mater. Sci. J. 2017; 11: 1
  • 10 Sharma M, Sharma M, Hazarika A, Satyanarayana L, Karunakar GV, Bania KK. Mol. Catal. 2017; 432: 210
  • 11 Raut AB, Tiwari AR, Bhanage BM. ChemCatChem 2017; 9: 1292
  • 12 Elazab HA, Sadek MA, El-Idreesy TT. Adsorp. Sci. Technol. 2018; 36: 1352
  • 13 Elazab HA, Radwan MA, El-Idreesy TT. Int. J. Nanosci. 2019; 18: 1850032
  • 14 Benyettou F, Motte L, Traboulsi H, Mazher J, Pasricha R, Olsen J.-C, Trabolsi A, Guenin E. Chem. Eur. J. 2018; 24: 2349
  • 15 Shah AP, Sharma AS, Jain S, Shimpi NG. New J. Chem. 2018; 42: 8724
  • 16 Souccar C, Varanda WA, Aronstam RS, Daly JW, Albuquerque EX. Mol. Pharmacol. 1984; 25: 384
  • 17 da S Dias C, de M Lima T, Lima CG. S, Zuekrman-Schpector J, Schwab RS. ChemistrySelect 2018; 3: 6195
  • 18 Dhara K, Parasar B, Patil AJ, Dash J. Synth. Commun. 2019; 49: 859
  • 19 Ayad AI, Marín CB, Colaco E, Lefevre C, Méthivier C, Driss AO, Landoulsi J, Guénin G. Green Chem. 2019; 21: 6646
  • 20 Norouzi N, Das MK, Richard AJ, Ibrahim AA, El-Kaderi HM, El-Shall MS. Nanoscale 2020; 12: 19191
  • 21 Das MK, Bobb JA, Ibrahim AA, Lin A, AbouZeid KM, El-Shall MS. ACS Appl. Mater. Interfaces 2020; 12: 23844
  • 22 Zhang Q, Mao Z, Wang K, Phan NT. S, Zhang F. Green Chem. 2020; 22: 3239
  • 23 Steingruber HS, Mendioroz P, Diez AS, Gerbino DC. Synthesis 2020; 52: 619
    • 24a Daneshvar A, Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I, Khalili A. Organometallics 2016; 35: 1747
    • 24b Salam N, Kundu SK, Roy AS, Mondal P, Ghosh K, Bhaumik A, Islam S. Dalton Trans. 2014; 43: 7057
    • 24c Na Y, Park S, Han SB, Han H, Ko S, Chang S. J. Am. Chem. Soc. 2004; 126: 250
  • 25 Akiyama T, Taniguchi T, Saito N, Doi R, Honma T, Tamenori Y, Ohki Y, Takahashi N, Fujioka H, Sato Y, Arisawa M. Green Chem. 2017; 19: 3357
  • 26 Yamada M, Shio Y, Akiyama T, Honma T, Ohki Y, Takahashi N, Murai K, Arisawa M. Green Chem. 2019; 21: 4541
  • 27 Sharma AS, Kaur H, Barot N. J. Phys. Org. Chem. 2018; 31: e3749
    • 28a Cravotto G, Calcio Gaudino E, Tagliapietra S, Carnaroglio D, Procopio A. Green Process. Synth. 2012; 1: 269
    • 28b Calcio Gaudino E, Tagliapietra S, Palmisano G, Martina K, Carnaroglio D, Cravotto G. ACS Sustainable Chem. Eng. 2017; 5: 9233
  • 29 Tabasso S, Gaudino EC, Acciardo E, Manzoli M, Giacomino A, Cravotto G. Molecules 2019; 24: 288
  • 30 Tabasso S, Gaudino EC, Acciardo E, Manzoli M, Bonelli B, Cravotto G. Front. Chem. 2020; 8: 253
    • 31a Sargin I, Baran T, Arslan G. Sep. Purif. Technol. 2020; 247: 116987
    • 31b Rout L, Kumar A, Chand PK, Achary LS. K, Dash P. ChemisrySelect 2019; 4: 5696
    • 31c Sarada R, Jagannadharao V, Govindh B, Padma M. Pharma Chem. 2017; 9: 115