Synthesis 2021; 53(19): 3513-3521 DOI: 10.1055/a-1505-0916
Recent Advances in Metal-Nanoparticle-Catalyzed Coupling Reactions Assisted by Microwave Irradiation
Makoto Sako
,
Mitsuhiro Arisawa∗
This work was partially supported by a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Nos. JP15KT00630 and JP20K15281), the Platform Project for Supporting Drug Discovery and Life Science Research [Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)] of the Japan Agency for Medical Research and Development (AMED) (Grant No. JP19am0101084), the Yazaki Memorial Foundation for Science and Technology, and the Nagase Science Technology Foundation.
Abstract
Transition-metal-catalyzed coupling reactions are among some of the most important processes in synthetic chemistry as they are reliable tools for carbon–carbon and carbon–heteroatom bond formation. This short review focuses on recent advances in microwave-assisted coupling reactions using transition-metal-nanoparticle catalysts.
1 Introduction
2 Microwave-Assisted Coupling Reactions in Polar Solvents
3 Microwave-Assisted Coupling Reactions in Nonpolar Solvents
4 Conclusion
Key words
nanoparticles -
microwaves -
transition metals -
solvents -
heterogeneous -
coupling reactions
Publication History
Received: 14 April 2021
Accepted after revision: 10 May 2021
Accepted Manuscript online: 10 May 2021
Article published online: 08 June 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
For reviews on transition-metal-catalyzed couplings, see:
1a Transition Metal-Catalyzed Couplings in Process Chemistry: Case Studies from the Pharmaceutical Industry.
Magano J,
Dunetz JR.
Wiley-VCH; Weinheim: 2013
1b
Magano J,
Dunetz JR.
Chem. Rev. 2011; 111: 2177
2a
Yamada M,
Arisawa M.
Tetrahedron Lett. 2020; 61: 151422
2b
Arisawa M.
Chem. Pharm. Bull. 2019; 67: 733
2c
Biffis A,
Centomo P,
Zotto AD,
Zecca M.
Chem. Rev. 2018; 118: 2249
2d
Yasukawa T,
Miyamura H,
Kobayashi S.
Chem. Soc. Rev. 2014; 43: 1450
2e
Wang D,
Astruc D.
Chem. Rev. 2014; 114: 6949
2f
Astruc D,
Lu F,
Aranzaes JR.
Angew. Chem. Int. Ed. 2005; 44: 7852
3a
Rathi AK,
Gawande MB,
Zboril R,
Varma RS.
Coord. Chem. Rev. 2015; 291: 68
3b
Microwave Heating as a Tool for Sustainable Chemistry
.
Leadbeater NE.
CRC Press; Boca Raton: 2011
3c
Kappe CO,
Dallinger D.
Mol. Diversity 2009; 13: 71
3d
Moseley JD,
Kappe CO.
Green Chem. 2011; 13: 794
4a
Kappe CO,
Pieber B,
Dallinger D.
Angew. Chem. Int. Ed. 2013; 52: 1088
4b
Dudley GB,
Stiegman AE,
Rosana MR.
Angew. Chem. Int. Ed. 2013; 52: 7918
4c
Kappe CO.
Angew. Chem. Int. Ed. 2013; 52: 7924
For recent reviews on microwave-assisted transition-metal-catalyzed reactions, see:
5a
Baqi Y.
Catalysts 2021; 11: 46
5b
Kadu BS.
Catal. Sci. Technol. 2021; 11: 1186
5c
Palma V,
Barba D,
Cortese M,
Martino M,
Renda S,
Meloni E.
Catalysts 2020; 10: 246
5d
Salih KS. M,
Baqi Y.
Catalysts 2020; 10: 4
5e
Liu X,
Astruc D.
Adv. Synth. Catal. 2018; 360: 3426
6
Kokel S,
Schäfer C,
Török B.
Green Chem. 2017; 19: 3729
7
Gawande MB,
Shelke SN,
Zboril R,
Varma RS.
Acc. Chem. Res. 2014; 47: 1338
8
Rodríguez AM,
Prieto P,
de la Hoz A,
Díaz-Ortiz Á,
Martín DR,
García JI.
ChemistryOpen 2015; 4: 308
9
Zhang J,
Bai X.
Open Mater. Sci. J. 2017; 11: 1
10
Sharma M,
Sharma M,
Hazarika A,
Satyanarayana L,
Karunakar GV,
Bania KK.
Mol. Catal. 2017; 432: 210
11
Raut AB,
Tiwari AR,
Bhanage BM.
ChemCatChem 2017; 9: 1292
12
Elazab HA,
Sadek MA,
El-Idreesy TT.
Adsorp. Sci. Technol. 2018; 36: 1352
13
Elazab HA,
Radwan MA,
El-Idreesy TT.
Int. J. Nanosci. 2019; 18: 1850032
14
Benyettou F,
Motte L,
Traboulsi H,
Mazher J,
Pasricha R,
Olsen J.-C,
Trabolsi A,
Guenin E.
Chem. Eur. J. 2018; 24: 2349
15
Shah AP,
Sharma AS,
Jain S,
Shimpi NG.
New J. Chem. 2018; 42: 8724
16
Souccar C,
Varanda WA,
Aronstam RS,
Daly JW,
Albuquerque EX.
Mol. Pharmacol. 1984; 25: 384
17
da S Dias C,
de M Lima T,
Lima CG. S,
Zuekrman-Schpector J,
Schwab RS.
ChemistrySelect 2018; 3: 6195
18
Dhara K,
Parasar B,
Patil AJ,
Dash J.
Synth. Commun. 2019; 49: 859
19
Ayad AI,
Marín CB,
Colaco E,
Lefevre C,
Méthivier C,
Driss AO,
Landoulsi J,
Guénin G.
Green Chem. 2019; 21: 6646
20
Norouzi N,
Das MK,
Richard AJ,
Ibrahim AA,
El-Kaderi HM,
El-Shall MS.
Nanoscale 2020; 12: 19191
21
Das MK,
Bobb JA,
Ibrahim AA,
Lin A,
AbouZeid KM,
El-Shall MS.
ACS Appl. Mater. Interfaces 2020; 12: 23844
22
Zhang Q,
Mao Z,
Wang K,
Phan NT. S,
Zhang F.
Green Chem. 2020; 22: 3239
23
Steingruber HS,
Mendioroz P,
Diez AS,
Gerbino DC.
Synthesis 2020; 52: 619
24a
Daneshvar A,
Moghadam M,
Tangestaninejad S,
Mirkhani V,
Mohammadpoor-Baltork I,
Khalili A.
Organometallics 2016; 35: 1747
24b
Salam N,
Kundu SK,
Roy AS,
Mondal P,
Ghosh K,
Bhaumik A,
Islam S.
Dalton Trans. 2014; 43: 7057
24c
Na Y,
Park S,
Han SB,
Han H,
Ko S,
Chang S.
J. Am. Chem. Soc. 2004; 126: 250
25
Akiyama T,
Taniguchi T,
Saito N,
Doi R,
Honma T,
Tamenori Y,
Ohki Y,
Takahashi N,
Fujioka H,
Sato Y,
Arisawa M.
Green Chem. 2017; 19: 3357
26
Yamada M,
Shio Y,
Akiyama T,
Honma T,
Ohki Y,
Takahashi N,
Murai K,
Arisawa M.
Green Chem. 2019; 21: 4541
27
Sharma AS,
Kaur H,
Barot N.
J. Phys. Org. Chem. 2018; 31: e3749
28a
Cravotto G,
Calcio Gaudino E,
Tagliapietra S,
Carnaroglio D,
Procopio A.
Green Process. Synth. 2012; 1: 269
28b
Calcio Gaudino E,
Tagliapietra S,
Palmisano G,
Martina K,
Carnaroglio D,
Cravotto G.
ACS Sustainable Chem. Eng. 2017; 5: 9233
29
Tabasso S,
Gaudino EC,
Acciardo E,
Manzoli M,
Giacomino A,
Cravotto G.
Molecules 2019; 24: 288
30
Tabasso S,
Gaudino EC,
Acciardo E,
Manzoli M,
Bonelli B,
Cravotto G.
Front. Chem. 2020; 8: 253
31a
Sargin I,
Baran T,
Arslan G.
Sep. Purif. Technol. 2020; 247: 116987
31b
Rout L,
Kumar A,
Chand PK,
Achary LS. K,
Dash P.
ChemisrySelect 2019; 4: 5696
31c
Sarada R,
Jagannadharao V,
Govindh B,
Padma M.
Pharma Chem. 2017; 9: 115