Synlett, Table of Contents Synlett 2021; 32(12): 1201-1206DOI: 10.1055/a-1506-4509 letter Diastereoselective Synthesis of Spiropyrazolones via 1,3-Dipolar [3+2] Cycloadditions between Pyrazolone-Based Olefins and N,N′-Cyclic Azomethine Imines Zhe Tang , Hui-Hui Wu , Xiao-Zu Fan , Heng Zhang , Lu-Yu Cai , Xiao-Fan Bi , Hong-Wu Zhao∗ Recommend Article Abstract Buy Article All articles of this category Abstract Under the catalysis of PhCO2H, the 1,3-dipolar [3+2] cycloaddition between pyrazolone-based olefins and N,N′-cyclic azomethine imines proceeded readily, thus delivering structurally novel spiropyrazolones with up to 98% yield and >20:1 dr. The relative stereochemical configuration of the obtained spiropyrazolones was unambiguously assigned by X-ray single-crystal structure analysis. The diastereoselective formation of the title spiropyrazolones was interpreted by the hypothesized reaction mechanism. Key words Key words1,3-dipolar [3+2] cycloaddition - pyrazolone-based olefin - N,N′-cyclic azomethine imine - spiropyrazolone - diastereoselectivity Full Text References References and Notes For selected examples, see: 1a Wu S, Li Y, Xu G, Chen S, Zhang Y, Liu N, Dong G, Miao C, Su H, Zhang W, Sheng C. Eur. J. Med. Chem. 2016; 115: 141 1b Zhang Y, Wu S, Wang S, Fang K, Dong G, Liu N, Miao Z, Yao J, Li J, Zhang W, Sheng C, Wang W. Eur. J. Org. Chem. 2015; 2030 1c Wang L, Yang Z, Ni T, Shi W, Guo Y, Li K, Shi A, Wu S, Sheng C. Bioorg. Med. Chem. Lett. 2020; 30: 126662 1d Chande MS, Barve PA, Suryanarayan V. J. Heterocycl. Chem. 2007; 44: 49 1e Han B, Xu S, Wang P. CN 104610148, 2015 1f Silaychev PS, Filimonov VO, Maslivets AN, Makhmudov RR. RU 2577528, 2014 1g Bao X, Wei S, Qian X, Qu J, Wang B, Zou L, Ge G. Org. Lett. 2018; 20: 3394 For a review, see: 2a Xie X, Xiang L, Peng C, Han B. Chem. Rec. 2019; 19: 2209 For selected examples, see: 2b Awasthi A, Yadav P, Kumar V, Tiwari DK. Adv. Synth. Catal. 2020; 362: 4378 2c Zhang J, Chan W.-L, Chen L, Ullah N, Lu Y. Org. Chem. Front. 2019; 6: 2210 2d Cheng C, Sun X, Miao Z. Org. Biomol. Chem. 2020; 18: 5577 2e Lin Y, Zhao B.-L, Du D.-M. J. Org. Chem. 2019; 84: 10209 2f Chen N, Zhu L, Gan L, Liu Z, Wang R, Cai X, Jiang X. Eur. J. Org. Chem. 2018; 2939 2g Maity R, Sahoo SC, Pan SC. Eur. J. Org. Chem. 2019; 2297 2h Wang C, Wen D, Chen H, Deng Y, Liu X, Liu X, Wang L, Gao F, Guo Y, Sun M, Wang K, Yan W. Org. Biomol. Chem. 2019; 17: 5514 For selected examples, see: 3a Mao B, Liu H, Yan Z, Xu Y, Xu J, Wang W, Wu Y, Guo H. Angew. Chem. Int. Ed. 2020; 59: 11316 3b da Silva AF, Leonarczyk IA, Ferreira MA. B, Jurberg ID. Org. Chem. Front. 2020; 7: 3599 3c Meninno S, Mazzanti A, Lattanzi A. Adv. Synth. Catal. 2019; 361: 79 3d Zhang Y, Wang C, Huang W, Haruehanroengra P, Peng C, Sheng J, Han B, He G. Org. Chem. Front. 2018; 5: 2229 3e Zhao C, Shi K, He G, Gu Q, Ru Z, Yang L, Zhong G. Org. Lett. 2019; 21: 7943 3f Mondal B, Maity R, Pan SC. J. Org. Chem. 2018; 83: 8645 3g Liang J.-Y, Shen S.-J, Chai X.-Q, Lv T. J. Org. Chem. 2018; 83: 12744 3h Luo W, Shao B, Li J, Xiao X, Song D, Ling F, Zhong W. Org. Chem. Front. 2020; 7: 1016 For selected examples, see: 4a Li H, Gontla R, Flegel J, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2019; 58: 307 4b Leng H.-J, Li Q.-Z, Zeng R, Dai Q.-S, Zhu H.-P, Liu Y, Huang W, Han B, Li J.-L. Adv. Synth. Catal. 2018; 360: 229 4c Xu J, Hu L, Hu H, Ge S, Liu X, Feng X. Org. Lett. 2019; 21: 1632 4d Sun B.-B, Chen J.-B, Zhang J.-Q, Yang X.-P, Lv H.-P, Wang Z, Wang X.-W. Org. Chem. Front. 2020; 7: 796 4e Sun B.-B, Zhang J.-Q, Chen J.-B, Fan W.-T, Yu J.-Q, Hu J.-M, Wang X.-W. Org. Chem. Front. 2019; 6: 1842 4f Ji Y.-L, Li H.-P, Ai Y.-Y, Li G, He X.-H, Huang W, Huang R.-Z, Han B. Org. Biomol. Chem. 2019; 17: 9217 4g Krishna AV, Reddy GS, Gorachand B, Ramachary DB. Eur. J. Org. Chem. 2020; 6623 For examples, see: 5a Li X, Chen F.-Y, Kang J.-W, Zhou J, Peng C, Huang W, Zhou M.-K, He G, Han B. J. Org. Chem. 2019; 84: 9138 5b Khairnar PV, Wu C.-Y, Lin Y.-F, Edukondalu A, Chen Y.-R, Lin W. Org. Lett. 2020; 22: 4760 For selected examples, see: 6a Cheng C, Zhang J, Wang X, Miao Z. J. Org. Chem. 2018; 83: 5450 6b Du J, Wu J.-H, Zhu L, Ren X, Jiang C, Wang T. Adv. Synth. Catal. 2020; 362: 2510 6c Cheng C, Sun X, Wu Z, Liu Q, Xiong L, Miao Z. Org. Biomol. Chem. 2019; 17: 3232 6d Shi Q, Zhang W, Wang Y, Qu L, Wei D. Org. Biomol. Chem. 2018; 16: 2301 6e Xu J, Yang W, Shi W, Mao B, Lin Y, Xiao Y, Guo H. Tetrahedron 2019; 75: 3609 6f Mutyala R, Reddy VR, Donthi R, Kallaganti VS. R, Chandra R. Tetrahedron Lett. 2019; 60: 703 6g Wang D, Wang X, Zhang XG, Miao ZW. Synthesis 2019; 51: 2149 6h Tan F, Su S, Liu Z. J. Heterocycl. Chem. 2020; 57: 2904 For a review, see: 7a Požgan F, Al Mamari H, Grošelj U, Svete J, Štefane B. Molecules 2018; 23: 3 For selected examples, see: 7b Xu X, Qian Y, Zavalij PY, Doyle MP. J. Am. Chem. Soc. 2013; 135: 1244 7c Gong J, Wan Q, Kang Q. Org. Lett. 2018; 20: 3354 7d Tong TM. T, Soeta T, Suga T, Kawamoto K, Hayashi Y, Ukaji Y. J. Org. Chem. 2017; 82: 1969 7e Volpe C, Meninno S, Capobianco A, Vigliotta G, Lattanzi A. Adv. Synth. Catal. 2019; 361: 1018 7f Fang Q.-Y, Jin H.-S, Wang R.-B, Zhao L.-M. Chem. Commun. 2019; 55: 10587 7g Li C, Wang C.-S, Li T.-Z, Mei G.-J, Shi F. Org. Lett. 2019; 21: 598 7h Yang Q.-Q, Yin X, He X.-L, Du W, Chen Y.-C. ACS Catal. 2019; 9: 1258 8 Typical Procedure and Characterization Data for 3aa A mixture of pyrazolone-based olefin 1a (1.0 equiv, 0.1 mmol), N,N′-cyclic azomethine imine 2a (1.25 equiv, 0.125 mmol), and PhCO2H (20.0 mol%) in toluene (1.0 mL) was stirred at 110 ℃. After the reaction was completed as indicated by TLC plate, the solvent was removed by evaporation and the resulted crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate, 4:1 to 2:1) to afford product trans-3aa (92% yield). Compound 3aa: white solid, yield 40.1 mg, 92%; mp 157.2–157.4 ℃. 1H NMR (400 MHz, CDCl3): δ = 7.82 (d, J = 7.6 Hz, 2 H), 7.44 (t, J = 8.0 Hz, 2 H), 7.33–7.24 (m, 9 H), 7.17 (d, J = 7.2 Hz, 2 H), 5.78 (s, 1 H), 4.43 (s, 1 H), 3.97–3.91 (m, 1 H), 3.28–3.21 (m, 1 H), 3.11–3.03 (m, 1 H), 3.00–2.91 (m, 1 H), 1.53 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 173.6, 170.9, 159.5, 137.4, 135.4, 131.9, 129.1, 129.0, 128.94, 128.90, 128.2, 126.1, 125.7, 125.1, 119.3, 77.5, 72.9, 63.9, 47.9, 32.0, 17.2 ppm. HRMS (ESI): m/z calcd for C27H25N4O2 [M + H]+: 437.1972; found: 437.1964. 9 CCDC 2065581 (trans-3ak) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/structures. Supplementary Material Supplementary Material Supporting Information