Synlett 2021; 32(14): 1457-1460
DOI: 10.1055/a-1509-0949
letter

Stereoselective Synthesis of Polyfunctionalized Nitrones through Conjugate Addition of α-Halo Hydrazones to Nitroso Compounds

Xiao-Fan Bi
,
Hai-Liang Pang
,
Zhe Tang
,
Heng Zhang
,
Lu-Yu Cai
,
Hui-Hui Wu
,
Xiao-Zu Fan
,
Hong-Wu Zhao
We thank Beijing Municipal Commission of Education (No. JC015001200902), Beijing Municipal Natural Science Foundation (No. 7102010, No. 2122008, No. 2172003), Basic Research Foundation of Beijing University of Technology (X4015001201101), Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (No. PHR201008025), and the Doctoral Scientific Research Start-up Foundation of Beijing University of Technology (No. 52015001200701) for financial support.


Abstract

In the presence of Na2CO3, conjugate addition of α-halo hydrazones to nitroso compounds proceeded readily to give polyfunctionalized nitrones in reasonable chemical yields and excellent stereoselectivities. The chemical structure and the stereochemical configuration of the products were unambiguously identified by an X-ray single-crystal structural analysis.

Supporting Information

Primary Data

Primary data for this article are available online at https://doi.org/10.5281/zenodo.4922793.



Publication History

Received: 26 April 2021

Accepted after revision: 14 May 2021

Accepted Manuscript online:
14 May 2021

Article published online:
14 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected examples, see:
    • 1a Rao PS, Kurumurthy C, Veeraswamy B, Kumar GS, Poornachandra Y, Kumar CG, Vasamsetti SB, Kotamraju S, Narsaiah B. Eur. J. Med. Chem. 2014; 80: 184
    • 1b Buchlovič M, Kříž Z, Hofr C, Potáček M. Bioorg. Med. Chem. 2013; 21: 1078
    • 1c Sklavounou E, Hay A, Ashraf N, Lamb K, Brown E, MacIntyre A, George WD, Hartley RC, Shiels PG. Biochem. Biophys. Res. Commun. 2006; 347: 420 ; corrigendum: Biochem. Biophys. Res. Commun. 2006, 347, 1206
    • 1d Giner-Sorolla A. J. Med. Chem. 1969; 12: 717

      For selected examples, see:
    • 2a Li Z, Zhao J, Sun B, Zhou T, Liu M, Liu S, Zhang M, Zhang Q. J. Am. Chem. Soc. 2017; 139: 11702
    • 2b Ferraz MC, Mano RA, Oliveira DH, Maia DS. V, Silva WP, Savegnago L, Lenardao EJ, Jacob RG. Medicines 2017; 4: 39
    • 2c Nguyen D.-V, Prakash P, Gravel E, Doris E. RSC Adv. 2016; 6: 89238
    • 2d Morales S, Guijarro FG, Alonso I, García Ruano JL, Cid MB. ACS Catal. 2015; 6: 84
    • 2e Matassini C, Parmeggiani C, Cardona F, Goti A. Org. Lett. 2015; 17: 4082
    • 2f Zeng Q, Zhang L, Yang J, Xu B, Xiao Y, Zhang J. Chem. Commun. 2014; 50: 4203
    • 2g Nakamura I, Onuma T, Kanazawa R, Nishigai Y, Terada M. Org. Lett. 2014; 16: 4198
    • 2h Medina SI, Wu J, Bode JW. Org. Biomol. Chem. 2010; 8: 3405
    • 2i Racine E, Py S. Org. Biomol. Chem. 2009; 7: 3385
    • 2j Moran J, Pfeiffer JY, Gorelsky SI, Beauchemin AM. Org. Lett. 2009; 11: 1895
    • 2k Cheng HS, Seow A.-H, Loh T.-P. Org. Lett. 2008; 10: 2805

      For selected examples, see:
    • 3a Zonta C, Cazzola E, Mba M, Licini G. Adv. Synth. Catal. 2008; 350: 2503
    • 3b Reidl TW, Son J, Wink DJ, Anderson LL. Angew. Chem. Int. Ed. 2017; 56: 11579
    • 3c Katahara S, Kobayashi S, Fujita K, Matsumoto T, Sato T, Chida N. Bull. Chem. Soc. Jpn. 2017; 90: 893
    • 3d Chavannavar AP, Oliver AG, Ashfeld BL. Chem. Commun. 2014; 50: 10853

      For selected examples, see:
    • 4a Volpe C, Meninno S, Roselli A, Mancinelli M, Mazzanti A, Lattanzi A. Adv. Synth. Catal. 2020; 362: 5457
    • 4b Hiraoka S, Matsumoto T, Matsuzaka K, Sato T, Chida N. Angew. Chem. Int. Ed. 2019; 58: 4381
    • 4c Moskal J, Milart P. Chem. Ber. 1985; 118: 4014

      For examples, see:
    • 5a Lopes SM. M, Cardoso AL, Lemos A, Pinho e Melo TM. V. D. Chem. Rev. 2018; 118: 11324
    • 5b Li Z, Li S, Kan T, Wang X, Xin X, Hou Y, Gong P. Adv. Synth. Catal. 2020; 362: 2626
    • 5c Yin W, Fang L, Wang Z, Gao F, Li Z, Wang Z. Org. Lett. 2019; 21: 7361
    • 5d Wu Q, Shao P.-L, He Y. RSC Adv. 2019; 9: 21507
    • 5e Zhang X, Pan Y, Wang H, Liang C, Ma X, Jiao W, Shao H. Adv. Synth. Catal. 2020; 363: 459
    • 5f Shelke AM, Suryavanshi G. Org. Lett. 2016; 18: 3968
    • 5g Deng Y, Pei C, Arman H, Dong K, Xu X, Doyle MP. Org. Lett. 2016; 18: 5884
    • 5h Guo C, Sahoo B, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2014; 136: 17402
    • 5i Chen J.-R, Dong W.-R, Candy M, Pan F.-F, Jörres M, Bolm C. J. Am. Chem. Soc. 2012; 134: 6924

      For selected examples, see:
    • 6a Hu X.-Q, Chen J.-R, Gao S, Feng B, Lu LQ, Xiao W.-J. Chem. Commun. 2013; 49: 7905
    • 6b Tong M.-C, Chen X, Li J, Huang R, Tao H, Wang C.-J. Angew. Chem. Int. Ed. 2014; 53: 4680
    • 6c Zhao H.-W, Pang H.-L, Tian T, Li B, Chen X.-Q, Song X.-Q, Meng W, Yang Z, Liu Y.-Y, Zhao Y.-D. Adv. Synth. Catal. 2016; 358: 1826
    • 6d Gao S, Chen J.-R, Hu X.-Q, Cheng H.-G, Lu L.-Q, Xiao W.-J. Adv. Synth. Catal. 2013; 355: 3539
    • 6e Huang R, Tao H.-Y, Wang C.-J. Org. Lett. 2017; 19: 1176
    • 6f Cheng B, Li Y, Wang T, Zhang X, Li H, Li Y, Zhai H. Chem. Commun. 2019; 55: 14606
    • 6g Wang Z, Yang Y, Gao F, Wang Z, Luo Q, Fang L. Org. Lett. 2018; 20: 934

      For selected examples, see:
    • 7a Li J, Huang R, Xing Y.-K, Qiu G, Tao H.-Y, Wang C.-J. J. Am. Chem. Soc. 2015; 137: 10124
    • 7b Semakin AN, Kokuev AO, Nelyubina YV, Sukhorukov AY, Zhmurov PA, Ioffe SL, Tartakovsky VA. Beilstein J. Org. Chem. 2016; 12: 2471
    • 7c Hatcher JM, Coltart DM. J. Am. Chem. Soc. 2010; 132: 4546
    • 7d Attanasi OA, Favi G, Filippone P, Mantellini F, Moscatelli G, Perrulli FR. Org. Lett. 2010; 12: 468
    • 7e Chen Z, Yan Q, Liu Z, Xu Y, Zhang Y. Angew. Chem. Int. Ed. 2013; 52: 13324
    • 7f Mantenuto S, Mantellini F, Favi G, Attanasi OA. Org. Lett. 2015; 17: 2014
    • 7g Carbone A, Spanò V, Parrino B, Ciancimino C, Attanasi OA, Favi G. Molecules 2013; 18: 2518
    • 7h Preti L, Attanasi OA, Caselli E, Favi G, Ori C, Davoli P, Felluga F, Prati F. Eur. J. Org. Chem. 2010; 2010: 4312
    • 7i De Crescentini L, Perrulli FR, Favi G, Santeusanio S, Giorgi G, Attanasi OA, Mantellini F. Org. Biomol. Chem. 2016; 14: 8674
    • 7j van Berkel SS, Brauch S, Gabriel L, Henze M, Stark S, Vasilev D, Wessjohann LA, Abbas M, Westermann B. Angew. Chem. Int. Ed. 2012; 51: 5343

      For selected examples, see:
    • 8a Roy SK, Purkait A, Aziz SM. T, Jana CK. Chem. Commun. 2020; 56: 3167
    • 8b Purkait A, Saha S, Ghosh S, Jana CK. Chem. Commun. 2020; 56: 15032
    • 8c González-Soria MJ, Alonso F. Adv. Synth. Catal. 2019; 361: 5005
    • 8d Wang C.-C, Huang J, Li XH, Kramer S, Lin G.-Q, Sun X.-W. Org. Lett. 2018; 20: 2888
    • 8e Mokar BD, Liu J, Liu R.-S. Org. Lett. 2018; 20: 1038
    • 8f Vasilikogiannaki E, Gryparis C, Kotzabasaki V, Lykakis IN, Stratakis M. Adv. Synth. Catal. 2013; 355: 907
    • 8g Bodnar BS, Miller MJ. Angew. Chem. Int. Ed. 2011; 50: 5630
    • 8h Dochnahl M, Fu GC. Angew. Chem. Int. Ed. 2009; 48: 2391
    • 8i Yamamoto H, Momiyama N. Chem. Commun. 2005; 3514

      For selected examples, see:
    • 9a Pilepić V, Uršić S. J. Mol. Struct.: THEOCHEM 2001; 538: 41
    • 9b Uršić S, Lovrek M, VinkovićVrček I, Pilepić V. J. Chem. Soc., Perkin Trans. 2 1999; 1295
    • 9c Uršić S, Pilepić V, Vrček V, Gabričević M, Zorc B. J. Chem. Soc., Perkin Trans. 2 1993; 509
    • 9d Uršić S, Vrček V, Gabričević M, Zorc B. J. Chem. Soc., Chem. Commun. 1992; 296
  • 10 N-(1Z,2Z)-2-[Oxido(phenyl)imino]-1-phenylethylidene}acetohydrazide (3aa); Typical ProcedureNa2CO3 (2.0 equiv, 0.40 mmol) was added to a solution of α-bromo hydrazone 1a (1.0 equiv, 0.20 mmol) and nitroso compound 2a (1.2 equiv, 0.24 mmol) in dry CH2Cl2 (1.0 mL) under air at rt, and the mixture was stirred for 20 h. When the reaction was complete (TLC), the mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography [silica gel, PE–EtOAc (3:1)] to give a yellow solid; yield: 51.7 mg (92%); mp 133.3–133.8 °C. 1H NMR (400 MHz, CDCl3): δ = 11.05–10.42 (m, 1 H), 8.10 (s, 1 H), 7.83 (s, 2 H), 7.68 (s, 2 H), 7.54 (s, 3 H), 7.41 (s, 3 H), 2.41–2.10 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 174.5, 146.8, 138.0, 135.8, 131.5, 131.0, 129.7, 129.5, 128.7, 127.2, 121.9, 20.4. HRMS (ESI): m/z [M + H]+ calcd for C16H16N3O2: 282.12370; found: 282.12405.
  • 11 CCDC 2075055 contains the supplementary crystallographic data for compound 3aa. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.