Subscribe to RSS
DOI: 10.1055/a-1516-4447
Immunmodulation im Cholesteatom
Immunomodulation in Cholesteatoma Supported by: Diese Arbeit wurde durch das Stipendium E37- (A Leichtle) Einzelförderung der Medizinischen Fakultäten der Universität zu Lübeck und das US-amerikanische NIH-Stipendium DC000129 sowie das VA Research Service-Stipendium (A Ryan) unterstützt.Zusammenfassung
Einleitung Die Ätiopathogenese der chronischen Otitis media epitympanalis bzw. des Cholesteatoms und ihr proliferierender destruierender Verlauf mit möglichen Komplikationen wie Destruktion der knöchernen Strukturen mit Hörverlust, vestibulärer Dysfunktion, Gesichtsnervenlähmung und intrakraniellen Komplikationen sind immer noch ungeklärt. Die Therapie der Wahl ist nach wie vor die operative Sanierung. Aktuelle Studien befassen sich immer mehr mit dem angeborenen Immunsystem.
Methoden Unsere Untersuchungen erfolgten im Mausmodell an WT-Mäusen und immundefizienten KO-Mäusen sowie an Gewebeproben vom Cholesteatom, gesunder Gehörgangshaut und gesunder Mittelohrschleimhaut, die während sanierenden Ohroperationen entnommen wurden. Die Expressionsanalysen erfolgten auf Gen- und Proteinebene mit TNF als Major Target zur Therapieevaluation. Mittels TUNEL-Färbung und Immunhistochemie an Kryoschnitten wurde die Apoptose-Rate durch TNF bestimmt.
Ergebnisse Das ungerichtet-expansive Cholesteatomwachstum zeigt ein immunmodulatorisches Profil mit Hoch- und Runterregulation von verschiedenen Gen-Netzwerken, vor allem Molekülen der TNF-Down- und -Upstream-Signalwege. Dabei wird TNF sowohl inflammatorisch als auch apoptotisch moduliert und eignet sich als möglicher Therapieansatz in verschiedenen Modellen.
Schlussfolgerungen Es gibt Hinweise auf eine immunmodulatorische Regulation im Cholesteatom.
Abstract
Introduction The etiopathogenesis of chronic otitis media epitympanalis/cholesteatoma and its proliferative destructive course with possible complications such as destruction of bony structures with hearing loss, vestibular dysfunction, facial nerve paralysis and intracranial complications are still unexplained. Surgery is still the way to go. New studies are increasingly looking at the innate immune system.
Methods Our studies were carried out in a mouse model in WT mice and immundeficient KO-mice, as well as in cholesteatoma and healthy ear canal skin and middle ear tissue, which was removed during ear surgery. The expression analyses were carried out at the gene and protein level using TNF as the major target for therapy evaluation. By means of TUNEL staining and immunohistochemistry the level of apoptosis was evaluated.
Results The uncontrolled undirected cholesteatoma growth shows an immunomodulatory profile with up and down-regulation of various gene networks, especially those involved in TNF downstream and upstream signaling pathways. TNF in cholesteatoma is modulated both inflammatorily and apoptotically and therefore is suitable as a possible therapeutic approach in various models.
Conclusions Cholesteatoma might be immunomodulatory regulated.
Publication History
Received: 02 March 2021
Accepted after revision: 21 May 2021
Article published online:
07 July 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Yung M, Tono T, Olszewska E. et al. EAONO/JOS Joint Consensus Statements on the Definitions, Classification and Staging of Middle Ear Cholesteatoma. Int Adv Otol 2017; 13: 1-8 DOI: 10.5152/iao.2017.3363. (PMID: 28059056)
- 2 Leichtle A, Klenke C, Ebmeyer J. et al. NOD-Like Receptor Signaling in Cholesteatoma. BioMed Research International 2015; 2015: 1-9 DOI: 10.1155/2015/408169. (PMID: 25922834)
- 3 Kuo C-L, Shiao A-S, Yung M. et al. Updates and knowledge gaps in cholesteatoma research. BioMed Research International 2015; 2015: 854024 DOI: 10.1155/2015/854024. (PMID: 25866816)
- 4 Chole RA, Gagnon PM, Vogel JP. Inactivation of specific Pseudomonas aeruginosa biofilm factors does not alter virulence in infected cholesteatomas. Otol Neurotol 2014; 35: 1585-1591 DOI: 10.1097/MAO.0000000000000558.
- 5 Deutsche Gesellschaft für Hals-Nasen-Ohren-Heilkunde. Leitlinie Cholesteatom.
- 6 Maniu A, Harabagiu O, Perde Schrepler M. et al. Molecular biology of cholesteatoma. Rom J Morphol Embryol 2014; 55: 7-13 (PMID: 24715159)
- 7 Kuo C-L. Etiopathogenesis of acquired cholesteatoma: prominent theories and recent advances in biomolecular research. Laryngoscope 2015; 125: 234-240 DOI: 10.1002/lary.24890. (PMID: 25123251)
- 8 Lee HY, Park MS, Byun JY. et al. Expression of pattern recognition receptors in cholesteatoma. Eur Arch Otorhinolaryngol 2014; 271: 245-253 DOI: 10.1007/s00405-013-2402-7. (PMID: 23440434)
- 9 Szczepański M, Szyfter W, Jenek R. et al. Toll-like receptors 2, 3 and 4 (TLR-2, TLR-3 and TLR-4) are expressed in the microenvironment of human acquired cholesteatoma. Eur Arch Otorhinolaryngol 2006; 263: 603-607 DOI: 10.1007/s00405-006-0030-1. (PMID: 16538507)
- 10 Leichtle A, Hernandez M, Ebmeyer J. et al. CC chemokine ligand 3 overcomes the bacteriocidal and phagocytic defect of macrophages and hastens recovery from experimental otitis media in TNF-/- mice. J Immunol 2010; 184: 3087-3097 DOI: 10.4049/jimmunol.0901167. (PMID: 20164426)
- 11 Lee J, Leichtle A, Zuckerman E. et al. NOD1/NOD2-mediated recognition of non-typeable Haemophilus influenzae activates innate immunity during otitis media. Innate Immun 2019; 25: 503-512 DOI: 10.1177/1753425919872266. (PMID: 31474163)
- 12 Strober W, Murray PJ, Kitani A. et al. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 2006; 6: 9-20 DOI: 10.1038/nri1747. (PMID: 16493424)
- 13 Vitale RF, de Andrade Quintanilha Ribeiro F. The role of Tumor Necrosis Factor -Alpha (TNF-α) in bone resorption present in middle ear cholesteatoma. Brazilian Journal of Otorhinolaryngology 2007; 73: 117-121 DOI: 10.1016/S1808-8694(15)31133-2.
- 14 Marahleh A, Kitaura H, Ohori F. et al. TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation. Front Immunol 2019; 10: 2925 DOI: 10.3389/fimmu.2019.02925. (PMID: 31921183)
- 15 Surarto B, Purnami N. Artono. et al. The Association of IL-1 Alpha Level and TNF Alpha Expressions on Bone Destruction in Chronic Suppurative Otitis Media and Cholesteatoma. Indian J Otolaryngol Head Neck Surg 2020; 72: 1-7 DOI: 10.1007/s12070-019-01704-z. (PMID: 32158647)
- 16 Morris G, Walker AJ, Berk M. et al. Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol 2018; 55: 5767-5786 DOI: 10.1007/s12035-017-0793-y. (PMID: 29052145)
- 17 van Antwerp DJ, Martin SJ, Kafri T. et al. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 1996; 274: 787-789 DOI: 10.1126/science.274.5288.787. (PMID: 8864120)
- 18 Miyao M, Shinoda H, Takahashi S. Caspase-3, caspase-8, and nuclear factor-kappaB expression in human cholesteatoma. Otol Neurotol 2006; 27: 8-13 DOI: 10.1097/01.mao.0000180482.34545.b8. (PMID: 16371840)
- 19 Takeuchi O, Hoshino K, Kawai T. et al. Differential Roles of TLR2 and TLR4 in Recognition of Gram-Negative and Gram-Positive Bacterial Cell Wall Components. Immunity 1999; 11: 443-451 DOI: 10.1016/s1074-7613(00)80119-3. (PMID: 10549626)
- 20 Leichtle A, Hernandez M, Pak K. et al. TLR4-mediated induction of TLR2 signaling is critical in the pathogenesis and resolution of otitis media. Innate Immun 2009; 15: 205-215 DOI: 10.1177/1753425909103170. (PMID: 19586996)
- 21 Hoshino K, Takeuchi O, Kawai T. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162: 3749-3752 (PMID: 27638938)
- 22 Hernandez M, Leichtle A, Pak K. et al. Myeloid differentiation primary response gene 88 is required for the resolution of otitis media. J Infect Dis 2008; 198: 1862-1869 DOI: 10.1086/593213. (PMID: 18986247)
- 23 Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45 DOI: 10.1093/nar/29.9.e45. (PMID: 11328886)
- 24 Birkle T, Brown GC. I'm infected, eat me! Innate immunity mediated by live, infected cells signalling to be phagocytosed. Infect Immun 2021; DOI: 10.1128/IAI.00476-20.
- 25 Man SM, Kanneganti T-D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 2016; 16: 7-21 DOI: 10.1038/nri.2015.7. (PMID: 26655628)
- 26 Chao J, Dewyer N, McKenna MJ. Spontaneous Resolution of Cholesteatoma in a Patient on Long-Term Infliximab. Ann Otol Rhinol Laryngol 2019; 128: 365-368 DOI: 10.1177/0003489418823790. (PMID: 30632386)
- 27 Drakskog C, de Klerk N, Westerberg J. et al. Extensive qPCR analysis reveals altered gene expression in middle ear mucosa from cholesteatoma patients. PLoS One 2020; 15: e0239161 DOI: 10.1371/journal.pone.0239161. (PMID: 32915926)
- 28 Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 2015; 15: 362-374 DOI: 10.1038/nri3834. (PMID: 26008591)
- 29 Klenke C, Janowski S, Borck D. et al. Identification of novel cholesteatoma-related gene expression signatures using full-genome microarrays. PLoS One 2012; 7: e52718 DOI: 10.1371/journal.pone.0052718. (PMID: 23285167)