RSS-Feed abonnieren
DOI: 10.1055/a-1516-7960
C(sp3)–H Activation Enabled by (η3-Indolylmethyl)palladium Complexes: Synthesis of Monosubstituted Tetrahydrocarbazoles
We thank IISER Mohali for the financial support. S.S.V.R. thanks DST for the Swarnajayanti fellowship (DST/SJF/CSA-01/2017-18), SERB for the Core Research Grant (CRG/2018/000016), and the Royal Society of Chemistry for the ‘RSC Research Fund’ grant (R20-3255).
Abstract
The synthesis of monosubstituted tetrahydrocarbazoles is achieved via the palladium-catalyzed formal [4+2] cycloaddition of 2-alkyl-3-indolylmethyl carbonates and monosubstituted olefins. The transformation demonstrates an unusual C(sp3)–H activation enabled by (η3-indolylmethyl)palladium complexes. The regioselectivity is found to be dependent on the nature of the substituent across the olefin component. Elaborate mechanistic studies are performed, and the synthetic utility of the products is also demonstrated.
Key words
C–H functionalization - tetrahydrocarbazoles - [4+2] cycloaddition - annulation - C–C bond formationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1516-7960.
- Supporting Information
- CIF File
Publikationsverlauf
Eingereicht: 25. April 2021
Angenommen nach Revision: 25. Mai 2021
Accepted Manuscript online:
25. Mai 2021
Artikel online veröffentlicht:
24. Juni 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Tan F, Cheng H.-G. Chem. Commun. 2019; 55: 6151
- 1b Chaudhari TY, Tandon V. Org. Biomol. Chem. 2021; 19: 1926
- 2a Liu C, Widenhoefer RA. Org. Lett. 2007; 9: 1935
- 2b Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9533
- 2c Grover HC, Lebold TP, Kerr MA. Org. Lett. 2011; 13: 220
- 2d Wang M.-Z, Zhou C.-Y, Che C.-M. Chem. Commun. 2011; 47: 1312
- 2e Talukdar R, Tiwari DP, Saha A, Ghorai MK. Org. Lett. 2014; 16: 3954
- 2f Liu Q.-J, Yan W.-G, Wang L, Zhang XP, Tang Y. Org. Lett. 2015; 17: 4014
- 2g Zhu Z.-Q, Yu L, Sun M, Mei G.-J, Shi F. Adv. Synth. Catal. 2018; 360: 3109
- 2h Bi H.-Y, Li C.-J, Wei C, Liang C, Mo D.-L. Green Chem. 2020; 22: 5815
- 3a Tan F, Li F, Zhang X.-X, Wang X.-F, Cheng H.-G, Chen J.-R, Xiao W.-J. Tetrahedron 2011; 67: 446
- 3b Cao Y.-J, Cheng H.-G, Lu L.-Q, Zhang J.-J, Cheng Y, Chen J.-R, Xiao W.-J. Adv. Synth. Catal. 2011; 353: 617
- 3c Liu Y, Nappi M, Arceo E, Vera S, Melchiorre P. J. Am. Chem. Soc. 2011; 133: 15212
- 3d Xiao Y.-C, Zhou Q.-Q, Dong L, Liu T.-Y, Chen Y.-C. Org. Lett. 2012; 14: 5940
- 4a Marinelli ER. Tetrahedron Lett. 1982; 23: 2745
- 4b Ko C.-W, Chou T.-S. J. Org. Chem. 1998; 63: 4645
- 4c Kuroda N, Takahashi Y, Yoshinaga K, Mukai C. Org. Lett. 2006; 8: 1843
- 4d Fuwa H, Sasaki M. Chem. Commun. 2007; 2876
- 4e Inagaki F, Mizutani M, Kuroda N, Mukai C. J. Org. Chem. 2009; 74: 6402
- 4f Gu B.-Q, Yang W.-L, Wu S.-X, Wang Y.-B, Deng W.-P. Org. Chem. Front. 2018; 5: 3430
- 5a Yadav S, Ramasastry SS. V. Chem. Asian J. 2020; 15: 2764
- 5b Yadav S, Ramasastry SS. V. Chem. Commun. 2021; 57: 77
- 6a Onitsuka K, Suzuki S, Takahashi S. Tetrahedron Lett. 2002; 43: 6197
- 6b Balme G, Bossharth E, Monteiro N. Eur. J. Org. Chem. 2003; 4101
- 6c Bras JL, Muzart J. Eur. J. Org. Chem. 2016; 2565
- 6d Zhang S, Yamamoto Y, Bao M. Adv. Synth. Catal. 2021; 363: 587
- 7a Belestskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
- 7b Narahashi H, Yamamoto A, Shimizu I. Chem. Lett. 2004; 33: 348
- 7c Felpin F.-X, Nassar-Hardy L, Le Callonnec F, Fouquet E. Tetrahedron 2011; 67: 2815
- 8a Vessels JT, Janicki SZ, Petillo PA. Org. Lett. 2000; 2: 73
- 8b Pho TV, Yuen JD, Kurzman JA, Smith BG, Miao M, Walker WT, Seshadri R, Wudl F. J. Am. Chem. Soc. 2012; 134: 18185
- 9a Chou C.-H, Trahanovsky WS. J. Org. Chem. 1986; 51: 4208
- 9b Ref. 8.
- 10 Zhao C.-Y, Li K, Pang Y, Li J.-Q, Liang C, Su G.-F, Mo D.-L. Adv. Synth. Catal. 2018; 360: 1919
- 11 CCDC 2051559 (3a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 12 The structure of the major isomer of 3i was identified by comparing with the known data and assigned to other derivatives in analogy. See: Fuwa H, Tako T, Ebine M, Sasaki M. Chem. Lett. 2008; 37: 904
- 13 See the Supporting Information for details.
- 14a Kuwano R, Shige T. J. Am. Chem. Soc. 2007; 129: 3802
- 14b Ueno S, Ohtsubo M, Kuwano R. Org. Lett. 2010; 12: 4332
- 14c Yang J, Mo H, Wu H, Cao D, Pan C, Wang Z. Chem. Commun. 2018; 54: 1213
- 15 For the substrate-induced conversion of Pd(II) to Pd(0), see: Singh B, Bankar SK, Kumar K, Ramasastry SS. V. Chem. Sci. 2020; 11: 4948
- 16 Mishra UK, Yadav S, Ramasastry SS. V. J. Org. Chem. 2017; 82: 6729
- 17 To our knowledge, the p-TSA-catalyzed transformation of 7j to 8j has no precedence.
- 18 Beutner G, Carrasquillo R, Geng P, Hsiao Y, Huang EC, Janey J, Katipally K, Kolotuchin S, La Porte T, Lee A, Lobben P, Lora-Gonzalez F, Mack B, Mudryk B, Qiu Y, Qian X, Ramirez A, Razler TM, Rosner T, Shi Z, Simmons E, Stevens J, Wang J, Wei C, Wisniewski SR, Zhu Y. Org. Lett. 2018; 20: 3736
- 19 Bugarin A, Jones KD, Connell BT. Chem. Commun. 2010; 46: 1715
- 20 Raghu M, Grover J, Ramasastry SS. V. Chem. Eur. J. 2016; 22: 18316
Recent comprehensive reviews on THCs:
Some selected references:
For η3-indolylmethyl palladium complexes, see:
Recent reviews on benzyl π-allylpalladiums:
The [4+2] cycloaddition of heteroaryl-based o-QDMs generated in situ by flash vacuum pyrolysis (FVP) of similar substrates are well known. For example, see: