RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2021; 32(12): 1227-1230
DOI: 10.1055/a-1520-9916
DOI: 10.1055/a-1520-9916
letter
Green Aerobic Oxidation of Thiols to Disulfides by Flavin–Iodine Coupled Organocatalysis
This work was supported in part by JSPS/MEXT KAKENHI [Grant-in-Aid for Scientific Research (C), No. 19K05617] and by the Electric Technology Research Foundation of Chugoku.

Abstract
Coupled catalysis using a riboflavin-derived organocatalyst and molecular iodine successfully promoted the aerobic oxidation of thiols to disulfides under metal-free mild conditions. The activation of molecular oxygen occurred smoothly at room temperature through the transfer of electrons from the iodine catalyst to the biomimetic flavin catalyst, forming the basis for a green oxidative synthesis of disulfides from thiols.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1520-9916.
- Supporting Information
Publikationsverlauf
Eingereicht: 22. April 2021
Angenommen: 31. Mai 2021
Accepted Manuscript online:
31. Mai 2021
Artikel online veröffentlicht:
14. Juni 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Hill CL. Nature 1999; 401: 436
- 1b Advances in Catalytic Activation of Dioxygen by Metal Complexes. Simándi LI. Kluwer Academic; Dordrecht: 2002
- 1c Green Oxidation in Organic Synthesis . Jiao N, Stahl SS. Wiley; Hoboken: 2019
- 2a Bruice TC. Acc. Chem. Res. 1980; 13: 256
- 2b Murahashi S.-I, Oda T, Masui Y. J. Am. Chem. Soc. 1989; 111: 5002
- 2c Murahashi S.-I. Angew. Chem. Int. Ed. 1995; 34: 2443
- 3a Imada Y, Iida H, Ono S, Murahashi S.-I. J. Am. Chem. Soc. 2003; 125: 2868
- 3b Imada Y, Iida H, Murahashi S.-I, Naota T. Angew. Chem. Int. Ed. 2005; 44: 1704
- 3c Chen S, Foss FW. Jr. Org. Lett. 2012; 14: 5150
- 3d Kotoučová H, Strnadová I, Kovandová M, Chudoba J, Dvořáková H, Cibulka R. Org. Biomol. Chem. 2014; 12: 2137
- 3e Murahashi S.-I, Zhang D, Iida H, Miyawaki T, Uenaka M, Murano K, Meguro K. Chem. Commun. 2014; 50: 10295
- 4a Fukuzumi S, Kuroda S, Tanaka T. J. Am. Chem. Soc. 1985; 107: 3020
- 4b Cibulka R, Vasold R, König B. Chem. Eur. J. 2004; 10: 6223
- 4c Mühldorf B, Wolf R. Angew. Chem. Int. Ed. 2016; 55: 427
- 4d Metternich JB, Gilmour R. J. Am. Chem. Soc. 2016; 138: 1040
- 4e Ramirez NP, König B, Gonzalez-Gomez JC. Org. Lett. 2019; 21: 1368
- 4f Zelenka J, Cibulka R, Roithová J. Angew. Chem. Int. Ed. 2019; 58: 15412
- 5a Iida H, Imada Y, Murahashi S.-I. Org. Biomol. Chem. 2015; 13: 7599
- 5b Cibulka R. Eur. J. Org. Chem. 2015; 915
- 5c König B, Kümmel S, Svobodová E, Cibulka R. Phys. Sci. Rev. 2018; 3: 20170168
- 6 Ishikawa T, Kimura M, Kumoi T, Iida H. ACS Catal. 2017; 7: 4986
- 7a Ohkado R, Ishikawa T, Iida H. Green Chem. 2018; 20: 984
- 7b Iida H, Demizu R, Ohkado R. J. Org. Chem. 2018; 83: 12291
- 7c Tanimoto K, Ohkado R, Iida H. J. Org. Chem. 2019; 84: 14980
- 7d Jiang X, Shen Z, Zheng C, Fang L, Chen K, Yu C. Tetrahedron Lett. 2020; 61: 152141
- 8 Tanimoto K, Okai H, Oka M, Ohkado R, Iida H. Org. Lett. 2021; 23: 2084
- 9 Okai H, Tanimoto K, Ohkado R, Iida H. Org. Lett. 2020; 22: 8002
- 10 Pramanik M, Choudhuri K, Mal P. Org. Biomol. Chem. 2020; 18: 8771
- 11a Narayan M, Welker E, Wedemeyer WJ, Scheraga HA. Acc. Chem. Res. 2000; 33: 805
- 11b Lee MH, Yang Z, Lim CW, Lee YH, Dongbang S, Kang C, Kim JS. Chem. Rev. 2013; 113: 5071
- 11c Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Chem. Rev. 2017; 117: 8094
- 11d Fass D, Thorpe C. Chem. Rev. 2018; 118: 1169
- 12a Grönbeck H, Curioni A, Andreoni W. J. Am. Chem. Soc. 2000; 122: 3839
- 12b Cui H.-K, Guo Y, He Y, Wang F.-L, Chang H.-N, Wang Y.-J, Wu F.-M, Tian C.-L, Liu L. Angew. Chem. Int. Ed. 2013; 52: 9558
- 14a Abdel-Mohsen HT, Sudheendran K, Conrad J, Beifuss U. Green Chem. 2013; 15: 1490
- 14b Dou Y, Huang X, Wang H, Yang L, Li H, Yuan B, Yang G. Green Chem. 2017; 19: 2491
- 14c Qiu X, Yang X, Zhang Y, Song S, Jiao N. Org. Chem. Front. 2019; 6: 2220
- 14d Song L, Li W, Duan W, An J, Tang S, Li L, Yang G. Green Chem. 2019; 21: 1432
- 15 Oka M, Katsube D, Tsuji T, Iida H. Org. Lett. 2020; 22: 9244
- 16 Müller F. Methods Enzymol., B 1971; 18: 453
- 17 Ménová P, Dvořáková H, Eigner V, Ludvík J, Cibulka R. Adv. Synth. Catal. 2013; 355: 3451
- 18 Sakai T, Kumoi T, Ishikawa T, Nitta T, Iida H. Org. Biomol. Chem. 2018; 16: 3999
- 19 Tolba AH, Vávra F, Chudoba J, Cibulka R. Eur. J. Org. Chem. 2020; 2020: 1579
- 20 Goto K, Holler M. Chem. Commun. 1998; 1915
- 21 Bettanin L, Saba S, Galetto FZ, Mike GA, Rafique J, Braga AL. Tetrahedron Lett. 2017; 58: 4713
- 22a Loechler EL, Hollocher TC. J. Am. Chem. Soc. 1975; 97: 3235
- 22b Loechler EL, Hollocher TC. J. Am. Chem. Soc. 1980; 102: 7312
- 23 Kamel C, Chan TW, Bruice TC. J. Am. Chem. Soc. 1977; 99: 7272
- 24 Dioctyl Disulfide (3a): Typical Procedure A mixture of octane-1-thiol (2a; 73.1 mg, 0.50 mmol), flavin 1a (13.6 mg, 0.025 mmol), I2 (6.35 mg, 0.025 mmol), and t-BuOH (1.0 mL) was stirred at 26 °C (water bath) for 8 h under air (1 atm, balloon) in the dark. The solvent was then evaporated and the residue was purified by column chromatography (silica gel, CHCl3) to give a colorless oil: yield: 70.7 mg (97%). 1H NMR (500 MHz, CDCl3, 25 °C): δ = 2.68 (t, J = 7.4 Hz, 4 H), 1.67 (quin, J = 7.4 Hz, 4 H), 1.41–1.33 (m, 4 H), 1.32–1.20 (m, 16 H), 0.88 (t, J = 6.9 Hz, 6 H). 13C{1H} NMR (126 MHz, CDCl3, 25 °C): δ = 39.3, 31.8, 29.3, 28.6, 22.7, 14.1.
For the selected examples, see:
For the selected examples, see:
For reviews, see:
Similar neutral riboflavin derivatives have been applied in the oxidation of thiols without photoirradiation or an iodine catalyst, but the reaction rate was very slow; see: