RSS-Feed abonnieren
DOI: 10.1055/a-1525-4335
Recent Strategies in Non-Heme-Type Metal Complex-Catalyzed Site-, Chemo-, and Enantioselective C–H Oxygenations
Financial support from the International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) from MEXT, Japan, is gratefully acknowledged.
Abstract
C–H bonds are ubiquitous and abundant in organic molecules. If such C–H bonds can be converted into the desired functional groups in a site-, chemo-, diastereo-, and enantio-selective manner, the functionalization of C–H bonds would be an efficient tool for step-, atom- and redox-economic organic synthesis. C–H oxidation, as a typical C–H functionalization, affords hydroxy and carbonyl groups, which are key functional groups in organic synthesis and biological chemistry, directly. Recently, significant developments have been made using non-heme-type transition-metal catalysts. Oxygen functional groups can be introduced to not only simple hydrocarbons but also complex natural products. In this paper, recent developments over the last fourteen years in non-heme-type complex-catalyzed C–H oxidations are reviewed.
1 Introduction
2 Regio- and Chemo-Selective C–H Oxidations
2.1 Tertiary Site-Selective C–H Oxidations
2.2 Secondary Site-Selective C–H Oxidations
2.3 C–H Oxidations of N-Containing Molecules
2.4 C–H Oxidations of Carboxylic Acids
2.5 Chemo- and Site-Selective Methylenic C–H Hydroxylations
3 Enantioselective C–H Oxidations
3.1 Desymmetrizations through C–H Oxidations
3.2 Enantiotopic Methylenic C–H Oxygenations
4 Conclusion
Key words
C–H oxidation - non-heme-type catalyst - site-selectivity - chemoselectivity - enantioselectivity - oxygen atom transferPublikationsverlauf
Eingereicht: 29. April 2021
Angenommen nach Revision: 09. Juni 2021
Accepted Manuscript online:
09. Juni 2021
Artikel online veröffentlicht:
12. Juli 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Philip RM, Radhika S, Afsina AbdullaC. M, Anilkumar G. Adv. Synth. Catal. 2021; 363: 1272
- 1b Petrosyan A, Hauptmann R, Pospech J. Eur. J. Org. Chem. 2018; 5237
- 2 Balavoine GG. A, Manoury E. Appl. Organomet. Chem. 1995; 9: 199
- 3a Vicens L, Olivo G, Costas M. ACS Catal. 2020; 10: 8611
- 3b Chen J, Jiang Z, Fukuzumi S, Nam W, Wang B. Coord. Chem. Rev. 2020; 421: 213443
- 3c Guo M, Corona T, Ray K, Nam W. ACS Cent. Sci. 2019; 5: 13
- 3d Ottenbacher RV, Talsi EP, Bryliakov KP. Chem. Rec. 2018; 18: 78
- 3e Vidal D, Olivo G, Costas M. Chem. Eur. J. 2018; 24: 5042
- 3f White MC, Zhao J. J. Am. Chem. Soc. 2018; 140: 13988
- 3g Genovino J, Sames D, Hamann LG, Touré BB. Angew. Chem. Int. Ed. 2016; 55: 14218
- 3h Costas M. Coord. Chem. Rev. 2011; 255: 2912
- 3i Gunay A, Theopold KH. Chem. Rev. 2010; 110: 1060
- 4a Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
- 4b Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
- 4c Karimov RR, Hartwig JF. Angew. Chem. Int. Ed. 2018; 57: 4234
- 5a Abe I. Chem. Pharm. Bull. 2020; 68: 823
- 5b Roiban G.-D, Agudo R, Reetz MT. Angew. Chem. Int. Ed. 2014; 53: 8659
- 5c Barry SM, Challis GL. ACS Catal. 2013; 3: 2362
- 5d Fasan R. ACS Catal. 2012; 2: 647
- 5e Ortiz de Montellano PR. Chem. Rev. 2010; 110: 932
- 6 Groves JT, Nemo TE, Myers RS. J. Am. Chem. Soc. 1979; 101: 1032
- 7a Jin L, Wang Q, Chen X, Liu N, Fang X, Yang Y.-F, She Y.-B. J. Org. Chem. 2020; 85: 14879
- 7b Shen H.-M, Liu L, Qi B, Hu M.-Y, Ye H.-L, She Y.-B. Mol. Catal. 2020; 493: 111102
- 7c Shing K.-P, Cao B, Liu Y, Lee HK, Li M.-D, Phillips DL, Chang X.-Y, Che C.-M. J. Am. Chem. Soc. 2018; 140: 7032
- 7d Nam W, Park S.-E, Lim IK, Lim MH, Hong J, Kim J. J. Am. Chem. Soc. 2003; 125: 14674
- 8a Burg F, Gicquel M, Breitenlechner S, Pöthig A, Bach T. Angew. Chem. Int. Ed. 2018; 57: 2953
- 8b Frost JR, Huber SM, Breitenlechner S, Bannwarth C, Bach T. Angew. Chem. Int. Ed. 2015; 54: 691
- 8c Srour H, Le Maux P, Simonneaux G. Inorg. Chem. 2012; 51: 5850
- 8d Le Maux P, Srour HF, Simonneaux G. Tetrahedron 2012; 68: 5824
- 8e Zhang R, Yu W.-Y, Che C.-M. Tetrahedron: Asymmetry 2005; 16: 3520
- 8f Zhang R, Yu W.-Y, Lai T.-S, Che C.-M. Chem. Commun. 1999; 1791
- 8g Gross Z, Ini S. Org. Lett. 1999; 1: 2077
- 8h Groves JT, Viski P. J. Org. Chem. 1990; 55: 3628
- 8i Groves JT, Viski P. J. Am. Chem. Soc. 1989; 111: 8537
- 9a Sun S, Ma Y, Liu Z, Liu L. Angew. Chem. Int. Ed. 2021; 60: 176
- 9b Sun S, Yang Y, Zhao R, Zhang D, Liu L. J. Am. Chem. Soc. 2020; 142: 19346
- 9c Murahashi S, Noji S, Hirabayashi T, Komiya N. Tetrahedron: Asymmetry 2005; 16: 3527
- 9d Murahashi S, Noji S, Komiya N. Adv. Synth. Catal. 2004; 346: 195
- 9e Punniyamurthy T, Katsuki T. Tetrahedron 1999; 55: 9439
- 9f Hamada T, Irie R, Mihara J, Hamachi K, Katsuki T. Tetrahedron 1998; 54: 10017
- 9g Punniyamurthy T, Miyafuji A, Katsuki T. Tetrahedron Lett. 1998; 39: 8295
- 9h Miyafuji A, Katsuki T. Synlett 1997; 836
- 9i Hamachi K, Irie R, Katsuki T. Tetrahedron Lett. 1996; 37: 4979
- 9j Larrow JF, Jacobsen EN. J. Am. Chem. Soc. 1994; 116: 12129
- 10 Leising RA, Norman RE, Que LJr. Inorg. Chem. 1990; 29: 2553
- 11a Battistella B, Ray K. Coord. Chem. Rev. 2020; 408: 213176
- 11b Cussó O, Ribas X, Costas M. Chem. Commun. 2015; 51: 14285
- 11c Talsi EP, Bryliakov KP. Coord. Chem. Rev. 2012; 256: 1418
- 11d Que LJr, Tolman WB. Nature 2008; 455: 333
- 11e Nam W. Acc. Chem. Res. 2007; 40: 522
- 12 Chen MS, White MC. Science 2007; 318: 783
- 13 Suzuki K, Oldenburg PD, Que LJr. Angew. Chem. Int. Ed. 2008; 47: 1887
- 14a Mas-Ballesté R, Que LJr. J. Am. Chem. Soc. 2007; 129: 15964
- 14b Makhlynets OV, Rybak-Akimova EV. Chem. Eur. J. 2010; 16: 13995
- 15 Vermeulen NA, Chen MS, White MC. Tetrahedron 2009; 65: 3078
- 16 Gómez L, Gracia-Bosch I, Company A, Benet-Buchholz J, Polo A, Sala X, Ribas X, Costas M. Angew. Chem. Int. Ed. 2009; 48: 5720
- 17a Hitomi Y, Arakawa K, Funabiki T, Kodera M. Angew. Chem. Int. Ed. 2012; 51: 3448
- 17b Hitomi Y, Arakawa K, Kodera M. Chem. Eur. J. 2013; 19: 14697
- 18a Ghosh M, Singh KK, Panda C, Weitz A, Hendrich MP, Collins TJ, Dhar BB, Gupta SS. J. Am. Chem. Soc. 2014; 136: 9524
- 18b Jana S, Ghosh M, Ambule M, Gupta SS. Org. Lett. 2017; 19: 746
- 19a Wu X, Seo MS, Davis KM, Lee Y.-M, Chen J, Cho K.-B, Pushkar YN, Nam W. J. Am. Chem. Soc. 2011; 133: 20088
- 19b Garcia-Bosch I, Company A, Cady CW, Styring S, Browne WR, Ribas X, Costas M. Angew. Chem. Int. Ed. 2011; 50: 5648
- 19c Sawant SC, Wu X, Cho J, Cho K.-B, Kim SH, Seo MS, Lee Y.-M, Kubo M, Ogura T, Shaik S, Nam W. Angew. Chem. Int. Ed. 2010; 49: 8190
- 19d Yin G, Danby AM, Kitko D, Carter JD, Scheper WM, Busch DH. J. Am. Chem. Soc. 2007; 129: 1512
- 20a Ishizuka T, Kotani H, Kojima T. Dalton Trans. 2016; 16727
- 20b Dhuri SN, Cho K.-B, Lee Y.-M, Shin SY, Kim JH, Mandal D, Shaik S, Nam W. J. Am. Chem. Soc. 2015; 137: 8623
- 20c Weisser F, Stevens H, Klein J, van der Meer M, Hohloch S, Sarkar B. Chem. Eur. J. 2015; 21: 8926
- 20d Kojima T, Hirai Y, Ishizuka T, Shiota Y, Yoshizawa K, Ikemura K, Ogura T, Fukuzumi S. Angew. Chem. Int. Ed. 2010; 49: 8449
- 20e Murali M, Mayilmurugan R, Palaniandavar M. Eur. J. Inorg. Chem. 2009; 3238
- 20f Yi CS, Kwon K.-H, Lee DW. Org. Lett. 2009; 11: 1567
- 20g Yamaguchi M, Kousaka H, Izawa S, Ichii Y, Kumano T, Masui D, Yamagishi T. Inorg. Chem. 2006; 45: 8342
- 20h Jitsukawa K, Oka Y, Yamaguchi S, Masuda H. Inorg. Chem. 2004; 43: 8119
- 20i Jitsukawa K, Oka Y, Einaga H, Masuda H. Tetrahedron Lett. 2001; 42: 3467
- 20j Kojima T, Matsuo H, Matsuda Y. Inorg. Chim. Acta 2000; 300-302: 661
- 20k Chatterjeea D, Mitra A, Roy BC. J. Mol. Catal. A: Chem. 2000; 161: 17
- 20l Kojima T, Matsuda Y. Chem. Lett. 1999; 81
- 20m Kojima T. Chem. Lett. 1996; 121
- 21 Ottenbacher RV, Samsonenko DG, Talsi EP, Bryliakov KP. Org. Lett. 2012; 14: 4310
- 22 Chambers RK, Zhao J, Delaney CP, White MC. Adv. Synth. Catal. 2020; 362: 417
- 23 Doiuchi D, Nakamura T, Hayashi H, Uchida T. Chem. Asian J. 2020; 15: 762
- 24a Chandra B, Hellan KM, Pattanayak S, Gupta SS. Chem. Sci. 2020; 11: 11877
- 24b Das A, Nutting JE, Stahl SS. Chem. Sci. 2019; 10: 7542
- 25a Robinson SG, Mack JB. C, Alektiar SN, Du Bois J, Sigman MS. Org. Lett. 2020; 22: 7060
- 25b Mack JB. C, Walker KL, Robinson SG, Zare RN, Sigman MS, Waymouth RM, Du Bois J. J. Am. Chem. Soc. 2019; 141: 972
- 25c Mack JB. C, Gipson JD, Du Bois J, Sigman MS. J. Am. Chem. Soc. 2017; 139: 9503
- 26 Chen MS, White MC. Science 2010; 327: 566
- 27 Prat I, Gómez L, Canta M, Ribas X, Costas M. Chem. Eur. J. 2013; 19: 1908
- 28a Gómez L, Canta M, Font D, Prat I, Ribas X, Costas M. J. Org. Chem. 2013; 78: 1421
- 28b Font D, Canta M, Milan M, Cussó O, Ribas X, Klein Gebbink RJ. M, Costas M. Angew. Chem. Int. Ed. 2016; 55: 5776
- 29a Gormisky PE, White MC. J. Am. Chem. Soc. 2013; 135: 14052
- 29b Zhao J, Nanjo T, de Lucca EC. Jr, White MC. Nat. Chem. 2019; 11: 213
- 30a Olivo G, Farinelli G, Barbieri A, Lanzalunga O, Di Stefano S, Costas M. Angew. Chem. Int. Ed. 2017; 56: 16347
- 30b Olivo G, Capocasa G, Lanzalunga O, Di Stefano S, Costas M. Chem. Commun. 2019; 55: 917
- 31 Izatt RM, Pawlak K, Bradshaw JS, Bruening RL. Chem. Rev. 1991; 91: 1721
- 32a Murahashi S, Naota T, Yonemura K. J. Am. Chem. Soc. 1988; 110: 8256
- 32b Khusnutdinova JR, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2014; 136: 2998
- 32c Legacy CJ, Wang A, O’Day BJ, Emmert MH. Angew. Chem. Int. Ed. 2015; 54: 14907
- 32d Youssif S. ARKIVOC 2001; (i): 242
- 33a McNeill E, Du Bois J. Chem. Sci. 2012; 3: 1810
- 33b Flender C, Adams AM, Roizen JL, McNeill E, Du Bois J, Zare RN. Chem. Sci. 2014; 5: 3309
- 33c Adams AM, Du Bois J, Malik HA. Org. Lett. 2015; 17: 6066
- 34 Howell JM, Feng K, Clark JR, Trzepkowski LJ, White MC. J. Am. Chem. Soc. 2015; 137: 14590
- 35 Nanjo T, de Lucca EC. Jr, White MC. J. Am. Chem. Soc. 2017; 139: 14586
- 36 Milan M, Carboni G, Salamone M, Costas M, Bietti M. ACS Catal. 2017; 7: 5903
- 37a Cussó O, Garcia-Bosch I, Ribas X, Lloret-Fillol J, Costas M. J. Am. Chem. Soc. 2013; 135: 14871
- 37b Cussó O, Garcia-Bosch I, Font D, Ribas X, Lloret-Fillol J, Costas M. Org. Lett. 2013; 15: 6158
- 38a Bigi MA, Reed SA, White MC. J. Am. Chem. Soc. 2012; 134: 9721
- 38b Bigi MA, Reed SA, White MC. Nat. Chem. 2011; 3: 216
- 39 Vicens L, Bietti M, Costas M. Angew. Chem. Int. Ed. 2021; 60: 4740
- 40a Company A, Gómez L, Güell M, Ribas X, Luis JM, Que LJr, Costas M. J. Am. Chem. Soc. 2007; 129: 15766
- 40b Nagataki T, Ishii K, Tachi Y, Itoh S. Dalton Trans. 2007; 1120
- 40c Chen K, Que LJr. J. Am. Chem. Soc. 2001; 123: 6327
- 41 Dantignana V, Milan M, Cussó O, Company A, Bietti M, Costas M. ACS Cent. Sci. 2017; 3: 1350
- 42a Salamone M, Bietti M. Acc. Chem. Res. 2015; 48: 2895
- 42b Salamone M, Mangiacapra L, Bietti M. J. Org. Chem. 2015; 80: 1149
- 43 Ottenbacher RV, Samsonenko DG, Nefedov AA, Talsi EP, Bryliakov KP. J. Catal. 2021; 399: 224
- 44a Milan M, Bietti M, Costas M. Org. Lett. 2018; 20: 2720
- 44b Milan M, Bietti M, Costas M. ACS Cent. Sci. 2017; 3: 196
- 45a Shen D, Miao C, Wang S, Xia C, Sun W. Org. Lett. 2014; 16: 1108
- 45b Wang B, Wang S, Xia C, Sun W. Chem. Eur. J. 2012; 18: 7332
- 45c Wang B, Miao C, Wang S, Xia C, Sun W. Chem. Eur. J. 2012; 18: 6750
- 46a Qiu B, Xu D, Sun Q, Miao C, Lee Y.-M, Li X.-X, Nam W, Sun W. ACS Catal. 2018; 8: 2479
- 46b Qui B, Xu D, Sun Q, Lin J, Sun W. Org. Lett. 2019; 21: 618
- 47 Sun Q, Sun W. Org. Lett. 2020; 22: 9529
- 48a Talsi EP, Samsonenko DG, Bryliakov KP. ChemCatChem 2017; 9: 2599
- 48b Talsi EP, Samsonenko DG, Ottenbacher RV, Bryliakov KP. ChemCatChem 2017; 9: 4580
- 48c Talsi EP, Bryliakov KP. ChemCatChem 2018; 10: 2693
- 49a Ottenbacher RV, Talsi EP, Rybalova TV, Bryliakov KP. ChemCatChem 2018; 10: 5323
- 49b Ottenbacher RV, Talsi EP, Bryliakov KP. J. Catal. 2020; 390: 170
- 50 Ottenbacher RV, Bryliakova AA, Shashkov MV, Talsi EP, Bryliakov KP. ACS Catal. 2021; 11: 5517
- 51 Cianfanelli M, Olivo G, Milan M, Klein Gebbink RJ. M, Ribas X, Bietti M, Costas M. J. Am. Chem. Soc. 2020; 142: 1584