Synlett 2021; 32(12): 1187-1191
DOI: 10.1055/a-1527-3781
letter

Synthetic Studies on the Viridin Skeleton through Regio- and Stereoselective Functionalization of the AE-Ring Moiety

Shuhei Hori
a   Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
,
Sho Ishida
b   School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
,
Go Itoh
b   School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
,
Koji Sugiyama
a   Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
,
Chiharu Yuki
a   Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
,
Masahiro Egi
c   Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
,
a   Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
,
a   Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
,
Shuji Akai
a   Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
› Author Affiliations
This work was financially supported by the JSPS KAKENHI [18HO4411 (Middle Molecular Strategy) and 18H02556] and Platform Project for Supporting Drug Discovery and Life Science Research [Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)] from AMED under Grant Number JP21am0101084.


Abstract

4,5,6,7-Tetrahydroisobenzofurans, corresponding to the AC(D)E ring structure of viridin and equipped with required substituents on the A-ring, were synthesized with high regio- and stereoselectivities via the Diels–Alder adduct of a furan derivative and maleic anhydride. The key steps of this work include the regioselective opening of a tetrahydrofuran ring, a stereoselective epoxidation, and an AlMe3-mediated regioselective epoxide opening followed by stereoselective C-methylation.

Supporting Information



Publication History

Received: 01 April 2021

Accepted after revision: 11 June 2021

Accepted Manuscript online:
11 June 2021

Article published online:
30 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Present addresses: Kenzo Yahata; Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany. Takashi Ikawa; Gifu Pharmaceutical University, Daigaku-Nishi, Gifu 501–1196, Japan.
  • 2 Brian PW, McGowan JG. Nature 1945; 156: 144
  • 3 Moffatt JS, Bu’lock JD, Tuen TH. J. Chem. Soc. D. 1969; 839a
  • 4 Brian PW, Curtis PJ, Hemming HG, Norris GL. F. Trans. Br. Mycol. Soc. 1957; 40: 365
  • 5 Chen Y, Wang B.-C, Xiao Y. J. Cell. Physiol. 2012; 227: 2818
  • 6 Aydin E, Faehling S, Saleh M, Llaó Cid L, Seiffert M, Roessner PM. Front. Immunol. 2020; 11: 595818
    • 7a Wipf P, Halter RJ. Org. Biomol. Chem. 2005; 3: 2053
    • 7b Norman BH, Shih C, Toth JE, Ray JE, Dodge JA, Johnson DW, Rutherford PG, Schultz RM, Worzalla JF, Vlahos CJ. J. Med. Chem. 1996; 39: 1106
    • 7c Powis G, Bonjouklian R, Berggren MM, Gallegos A, Abraham R, Ashendel C, Zalkow L, Matter WF, Dodge J, Grindey G, Vlahos CJ. Cancer Res. 1994; 54: 2419

      For total syntheses of 3, see:
    • 8a Guo Y, Quan T, Lu Y, Luo T. J. Am. Chem. Soc. 2017; 139: 6815
    • 8b Shigehisa H, Mizutani T, Tosaki S, Ohshima T, Shibasaki M. Tetrahedron 2005; 61: 5057
    • 8c Mizutani T, Honzawa S, Tosaki S, Shibasaki M. Angew. Chem. Int. Ed. 2002; 41: 4680
    • 9a Hotte SJ, Chi KN, Joshua AM, Tu D, Macfarlane RJ, Gregg RW, Ruether JD, Basappa NS, Finch D, Salim M, Winquist EW, Torri V, North S, Kollmannsberger C, Ellard SL, Eigl BJ, Tinker A, Allan AL, Beja K, Annala M, Powers J, Wyatt AW, Seymour L. Clin. Genitourin. Cancer 2019; 17: 201
    • 9b Howes AL, Chiang GG, Lang ES, Ho CB, Powis G, Vuori K, Abraham RT. Mol. Cancer Ther. 2007; 6: 2505
    • 9c Wipf P, Minion DJ, Halter RJ, Berggren MI, Ho CB, Chiang GG, Kirkpatrick L, Abraham R, Powis G. Org. Biomol. Chem. 2004; 2: 1911

      For reviews, see:
    • 10a Senapati BK. Org. Chem. Front. 2021; 8: 2608
    • 10b Xue D, He H, Gao S. Chem. Lett. 2021; 50: 497
    • 10c Jacobi PA, Könekamp T, Mascall KC, O’Connor RT, Onyango EO, Sessions EH. Adv. Heterocycl. Chem. 2013; 110: 119
    • 11a Mascall KC, Jacobi PA. Heterocycles 2014; 88: 1527
    • 11b Onyango EO, Jacobi PA. Synth. Commun. 2013; 43: 2748
    • 11c Onyango EO, Jacobi PA. J. Org. Chem. 2012; 77: 7411
    • 11d Mascall KC, Jacobi PA. Tetrahedron Lett. 2012; 53: 1620
    • 11e Viswanathan K, Ononye SN, Cooper HD, Hadden MK, Anderson AC, Wright DL. Bioorg. Med. Chem. Lett. 2012; 22: 6919
    • 11f Findlay AD, Gebert A, Cade IA, Banwell MG. Aust. J. Chem. 2009; 62: 1173
    • 11g Lang Y, Souza FE. S, Xu X, Taylor NJ, Assoud A, Rodrigo R. J. Org. Chem. 2009; 74: 5429
    • 11h Yuan H, Pupo MT, Blois J, Smith A, Weissleder R, Clardy J, Josephson L. Bioorg. Med. Chem. Lett. 2009; 19: 4223
    • 11i Muller KM, Keay BA. Synlett 2008; 1236
    • 11j Sessions EH, Jacobi PA. Org. Lett. 2006; 8: 4125
    • 11k Souza FE. S, Rodrigo R. Chem. Commun. 1999; 1947
  • 12 Anderson EA, Alexanian EJ, Sorensen EJ. Angew. Chem. Int. Ed. 2004; 43: 1998
  • 13 Del Bel M, Abela AR, Ng JD, Guerrero CA. J. Am. Chem. Soc. 2017; 139: 6819
  • 14 Ji Y, Xin Z, He H, Gao S. J. Am. Chem. Soc. 2019; 141: 16208
  • 15 Creemer LC, Kirst HA, Vlahos CJ, Schultz RM. J. Med. Chem. 1996; 39: 5021
  • 16 Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL. Mol. Cell 2000; 6: 909
  • 17 Akai S, Naka T, Omura S, Tanimoto K, Imanishi M, Takebe Y, Matsugi M, Kita Y. Chem. Eur. J. 2002; 8: 4255
  • 18 All position numbers used in this paper correspond to those of compound 1.
  • 19 The stereochemistry of compound 8 was determined from its NMR data and also by comparison of the NMR data with those of related compounds, see: Buts, T.; Sauer, J. Tetrahedron: Asymmetry 1997 , 8, 703; and ref. 17 (see also the SI).
  • 20 The translactonization occurred twice during the conversion of 8 into 10, as shown in Scheme 2. The stereochemical structure of 9 was determined by comparison of the 1H NMR data for 8, 9, and 10 (for details, see SI).
    • 21a Terayama N, Yasui E, Mizukami M, Miyashita M, Nagumo S. Org. Lett. 2014; 16: 2794
    • 21b Reddy GV, Kumar RS. C, Siva B, Babu KS, Rao JM. Synlett 2012; 23: 2677
    • 21c Boeckman RK. Jr, Shao P, Wrobleski ST, Boehmler DJ, Heintzelman GR, Barbosa AJ. J. Am. Chem. Soc. 2006; 128: 10572
    • 21d Nicolaou KC, Kim DW, Schlawe D, Lizos DE, de Noronha RG, Longbottom DA. Angew. Chem. Int. Ed. 2005; 44: 4925
    • 21e Boulineau FP. Wei A. J. Org. Chem. 2004; 69: 3391
    • 21f Sasaki M, Hatta M, Tanino K, Miyashita M. Tetrahedron Lett. 2004; 45: 1911
    • 21g Shanmugam P, Miyashita M. Org. Lett. 2003; 5: 3265
    • 21h Allwein SP, Cox JM, Howard BE, Johnson HW. B, Rainier JD. Tetrahedron 2002; 58: 1997
    • 21i Rainier JD, Cox JM. Org. Lett. 2000; 2: 2707
  • 22 The stereochemistry of the phenyl group of 18a was surmised on the basis of the reaction mechanism and was supported by nOe data (see SI).
    • 23a Izquierdo J, Rodríguez S, González FV. Org. Lett. 2011; 13: 3856
    • 23b Tanino K, Takahashi M, Tomata Y, Tokura H, Uehara T, Narabu T, Miyashita M. Nat. Chem. 2011; 3: 484
    • 23c Jung ME, Marquez R. Tetrahedron Lett. 1999; 40: 3129
  • 24 rac-(4R,5S,6R,7R)-3-{[(4-tert-Butylphenyl)sulfanyl]methyl}-7-(chloromethyl)-6-methoxy-4-methyl-4-phenyl-4,5,6,7-tetrahydro-2-benzofuran-5-ol (17a) and rac-(4S,6R,7R)-3-{[(4-tert-Butylphenyl)sulfanyl]methyl}-7-(chloromethyl)-6-methoxy-4-phenyl-6,7-dihydro-2-benzofuran-5(4H)-one (18a) A 1.0 M solution of DIBAL-H in hexane (0.97 mL, 1.0 mmol) was slowly added over 5 min to a solution of a 1:1 mixture of 15a and 15a′ (0.32 g, 0.66 mmol) in anhyd CH2Cl2 (6.6 mL) at –78 °C, and the mixture was stirred at –78 °C for 15 min. MeOH (0.4 mL) was added, and the mixture was stirred vigorously at –78 °C for 30 min then warmed to 0 °C. 2 N aq HCl was added at 0 °C, and the mixture was stirred vigorously at rt. The organic layer was separated, and the aqueous layer was extracted with CH2Cl2. The combined organic layers were dried (Na2SO4), filtered, and concentrated in vacuo. The residue was dissolved in anhyd CH2Cl2 (6.7 mL), and the solution was cooled to 0 °C. MsCl (0.079 mL, 1.01 mmol) and Et3N (0.28 mL, 2.0 mmol) were added, and the mixture was stirred at 0 °C for 10 min. Sat aq NaHCO3 was then added, and the mixture was vigorously stirred at 0 °C. The organic layer was separated, and the aqueous layer was extracted with CH2Cl2. The combined organic layers were dried (Na2SO4), filtered, and concentrated in vacuo. The residue was dissolved in 1:1 anhyd toluene–hexane (7.4 mL), and the mixture was cooled to –100 °C. A 2.0 M solution of AlMe3 in toluene (1.23 mL, 2.5 mmol) was added at –100 °C over 10 min, and the mixture was stirred at –100 °C for 2 h. 2 N aq HCl was added at 0 °C, and the mixture was vigorously stirred. The organic layer was separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried (Na2SO4), filtered, and concentrated in vacuo. The crude material was purified by flash column chromatography [silica gel, hexane–EtOAc (12:1 to 10:1)] to afford 17a as a yellow oil [yield: 0.135 g (37%)] and 18a as a colorless oil [yield: 21 mg (6%)]. 17a IR (neat): 3480 cm–1. 1H NMR (500 MHz, acetone-d 6): δ = 7.53 (d, J = 1.5 Hz, 1 H), 7.31–7.29 (m, 2 H), 7.27–7.23 (m, 4 H), 7.19–7.13 (m, 3 H), 4.26 (d, J = 5.0 Hz, 1 H), 4.06 (dd, J = 5.0, 1.5 Hz, 1 H), 3.98 (dd, J = 10.5, 7.0 Hz, 1 H), 3.93 (dd, J = 10.5, 7.5 Hz, 1 H), 3.78 (dd, J = 4.5, 1.5 Hz, 1 H). 3.74 (d, J = 13.5 Hz, 1 H), 3.57 (d, J = 13.5 Hz, 1 H), 3.47 (s, 3 H), 3.36–3.29 (m, 1 H), 1.78 (s, 3 H), 1.27 (s, 9 H). 13C NMR (125 MHz, acetone-d 6): δ = 150.4, 149.0, 146.9, 138.0, 133.7, 130.9, 128.8, 128.2, 126.9, 126.8, 126.7, 123.5, 80.4, 80.0, 59.6, 45.4, 44.8, 40.3, 34.9, 32.0, 31.4, 22.5. HRMS (MALDI): m/z calcd [M + Na]+ for C28H33 35ClNaO3S: 507.1731; found: 507.1731. 18a IR (neat): 1732 cm–1. 1H NMR (500 MHz, acetone-d 6): δ = 7.60 (s, 1 H), 7.42–7.38 (m, 2 H), 7.31–7.22 (m, 3 H), 7.16–7.12 (m, 2 H), 7.04–7.00 (m, 2 H), 4.18 (d, J = 5.0 Hz, 1 H), 3.86 (dd, J = 11.0, 5.0 Hz, 1 H), 3.85 (s, 1 H), 3.70–3.64 (m, 1 H), 3.68 (d, J = 14.0 Hz, 1 H), 3.59 (dd, J = 11.0, 7.5 Hz, 1 H), 3.23 (s, 3 H), 3.22 (d, J = 14.0 Hz, 1 H), 1.32 (s, 9 H). 13C NMR (125 MHz, acetone-d 6): δ = 204.7, 152.1, 148.1, 139.1, 138.0, 133.9, 132.1, 130.3, 129.0, 127.9, 126.9, 122.0, 120.6, 83.0, 58.3, 52.3, 44.9, 41.2, 35.1, 32.1, 31.5. HRMS (MALDI): m/z [M + Na]+ calcd for C27H29 35ClNaO3S: 491.1420; found: 491.1418.

    • For recent examples of domino dynamic kinetic resolution/IMDA reactions, see:
    • 25a Tsuchimochi I, Hori S, Takeuchi Y, Egi M, Satoh T, Kanomata K, Ikawa T, Akai S. Synlett 2021; 32: 822
    • 25b Sugiyama K, Kawanishi S, Oki Y, Kamiya M, Hanada R, Egi M, Akai S. Bioorg. Med. Chem. 2018; 26: 1378