RSS-Feed abonnieren
DOI: 10.1055/a-1532-4597
Zusammenhang von biologischer Reife, Körperkonstitution und körperlicher Fitness und der Leistung auf dem Ruderergometer bei Elite-Nachwuchsruderinnen
Association between biological maturity, body constitution and physical fitness with performance on a rowing ergometer in elite youth female rowers Bundesinstitut für Sportwissenschaft http://dx.doi.org/10.13039/501100007323 ZMVI1–081901 14–18 Prof. Dr. Urs GranacherBundesinstitut für Sportwissenschaft http://dx.doi.org/10.13039/501100007323 ZMVI4–081901/20–23 Prof. Dr. Urs Granacher

Zusammenfassung
Hintergrund Prädiktoren ruderspezifischer Leistungen wurden bislang im Nachwuchsleistungsrudersport nur unzureichend analysiert. Entsprechend war es das Ziel der vorliegenden Studie, Zusammenhänge zwischen der biologischen Reife, der Körperkonstitution sowie der körperlichen Fitness und der Leistung auf dem Ruderergometer bei Elite-Nachwuchsathletinnen zu untersuchen sowie Prognosen zur Leistung auf dem Ruderergometer aus diesen Parametern abzuleiten.
Methode Insgesamt nahmen 26 Elite-Nachwuchsruderinnen im Alter von 13,1 ± 0,5 Jahren (Abstand zum maximalen Wachstumsspurt: 2,2 ± 0,5 Jahre; mittlerer Trainingsumfang: 10 Stunden/Woche) an der Studie teil. Im Rahmen von Leistungsüberprüfungen im März 2016/2017 wurden Parameter der biologischen Reife (Abstand zum geschätzten Zeitpunkt des Wachstumsspurts), der Körperkonstitution (Körperhöhe/-masse, Mager-/Körperfettmasse), der Maximalkraft (Einer-Wiederholungsmaximum (EWM) Bankziehen, Beinpresse, isometrische Handkraft), der Schnellkraft (Hockstrecksprung), der Kraftausdauer (Bourban-Rumpfkraftausdauertest), des dynamischen Gleichgewichts (Y-Balance-Test) und der Richtungswechselschnelligkeit (Multistage Shuttle Run) sowie der Leistung auf dem Ruderergometer über 700 m erfasst. Lineare Regressionsanalysen wurden für die Modelle (1) biologische Reife, (2) biologische Reife und Körperkonstitution sowie (3) biologische Reife, Körperkonstitution und körperliche Fitness durchgeführt.
Ergebnisse Die statistische Analyse zeigte signifikante (p≤ 0,01) mittlere bis hohe Korrelationskoeffizienten (0,57 ≤r≤ 0,8) zwischen der biologischen Reife, Kennwerten der Körperkonstitution (Körperhöhe/-masse, Magermasse), der Maximalkraft (EWM Bankziehen, isometrische Handkraft) sowie der Kraftausdauer (Bourban-Rumpfkraftausdauertest) mit der Leistung auf dem Ruderergometer. Die lineare Regressionsanalyse identifizierte für das Modell 3 mit den Prädiktoren Körperkonstitution (Magermasse) und Kraftausdauer (Bourban-Rumpfkraftausdauertest) die beste Aufklärung für den 700m-Ruderergometertest (R² = 0,94; Akaike-Informationskriterium (AIC) = 82,1). Die Varianzaufklärung war größer als bei Modell 1 (R² = 0,60; AIC = 131,5) und Modell 2 (R² = 0,63; AIC = 111,6).
Schlussfolgerungen Aufgrund der vorliegenden Ergebnisse wird Trainern im Nachwuchsrudersport empfohlen, ausgewählte Merkmale der biologischen Reife, Körperkonstitution sowie der körperlichen Fitness (Maximalkraft, Kraftausdauer) für die Talententwicklung zu berücksichtigen, da diese besonders hoch mit der Leistung auf dem Ruderergometer assoziiert sind.
Abstract
Background There is a gap in the literature regarding predictors of rowing performance in young rowers. Therefore, the aim of this study was to investigate associations between parameters of biological maturity, body constitution and physical fitness with rowing performance in young female elite rowers.
Methods A total of 26 female rowers aged 13.1 ± 0.5 years (maturity offset: + 2.2 ± 0.5 years from peak height velocity; training volume: 10 hours/week) volunteered to participate in this study. During the performance tests in March 2016/2017, biological maturity (e. g. maturity offset), body constitution (e. g. body height/mass, lean body mass, body fat mass) and physical fitness were assessed. Physical fitness tests included the assessment of muscle strength (1-RM bench pull, leg press, maximal handgrip strength), muscle power (standing long jump test), muscular endurance (trunk muscle endurance test [Bourban test]), dynamic balance (Y-balance test) and change-of-direction speed (multistage shuttle run). Finally, rowing performance was analysed using a 700-m rowing ergometer test. A linear regression analysis was computed for the models (1) biological maturity, (2) biological maturity and body constitution, and (3) biologic maturity, body constitution, and physical fitness.
Results The statistical analysis showed significant (p≤ 0.01) medium-to-large sized correlations (0.57 ≤r≤ 0.8) between biological maturity, body constitution (e. g. body height/mass, lean body mass) and physical fitness (e. g. 1-RM bench pull, maximal handgrip strength, Bourban test) with rowing performance. Model 3 with the predictors body constitution (i. e. lean mass) and muscular endurance (i. e. Bourban test) showed the largest explained variance for 700-m rowing ergometer performance (R² = 0.94, Akaike information criterion [AIC] = 82.1). Explained variance of model 3 was higher compared with model 1 (R² = 0.6, AIC = 131.5) and model 2 (R² = 0.63, AIC = 111.6).
Conclusions As a result of this study, coaches involved in junior rowing should focus on characteristics such as biological maturity, body constitution and physical fitness (muscle strength, muscular endurance) during talent development as these correlated highly with rowing ergometer performance.
Publikationsverlauf
Artikel online veröffentlicht:
07. September 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Akça F. Prediction of rowing ergometer performance from functional anaerobic power, strength and anthropometric components. J Hum Kinet
- 2 Volianitis S, Yoshiga CC, Secher NH. The physiology of rowing with perspective on training and health. Eur J Appl Physiol
- 3 Huang CJ, Nesser TW. Strength and power determinants of rowing performance. Journal of Exercise Physiology Online 2007; 10 (04) 43-50
- 4 Lawton TW, Cronin JB, McGuigan MR. Strength, power, and muscular endurance exercise and elite rowing ergometer performance. J Strength Cond Res
- 5 Jürimäe T, Perez-Turpin JA, Cortell-Tormo JM. et al. Relationship between rowing ergometer performance and physiological responses to upper and lower body exercises in rowers. J Sci Med Sport
- 6 Lawton TW, Cronin JB, McGuigan MR. Strength testing and training of rowers: a review. Sports Med
- 7 Maciejewski H, Rahmani A, Chorin F. et al. The 1500-m rowing performance is highly dependent on modified wingate anaerobic test performance in national-level adolescent rowers. Pediatr Exerc Sci
- 8 Faul F, Erdfelder E, Lang A-G. et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods
- 9 Jenkins DG, Quintana-Ascencio PF. A solution to minimum sample size for regressions. PLoS ONE
- 10 Mirwald RL, Baxter-Jones ADG, Bailey DA. et al. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc
- 11 Moran J, Parry DA, Lewis I. et al. Maturation-related adaptations in running speed in response to sprint training in youth soccer players. J Sci Med Sport
- 12 Lloyd RS, Oliver JL, Faigenbaum AD. et al. Long-term athletic development- part 1: a pathway for all youth. J Strength Cond Res
- 13 Thiele D, Prieske O, Lesinski M. et al. Effects of equal volume heavy-resistance strength training versus strength endurance training on physical fitness and sport-specific performance in young elite female rowers. Front. Physiol
- 14 Sousa AC, Neiva HP, Izquierdo M. et al. Concurrent training intensities. Strength and Conditioning Journal
- 15 Pescatello LS. ACSM's guidelines for exercise testing and prescription. 9. ed.. 2014
- 16 Coren S. The lateral preference inventory for measurement of handedness, footedness, eyedness, and earedness: Norms for young adults. Bull. Psychon. Soc
- 17 Prieske O, Muehlbauer T, Mueller S. et al. Effects of surface instability on neuromuscular performance during drop jumps and landings. Eur J Appl Physiol
- 18 Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med
- 19 Soper C, Hume PA. Towards an ideal rowing technique for performance: The contributions from biomechanics. Sports Med 2004; 34 (12) 825-848
- 20 Tschopp M, Bourban P, Hübner K. et al. Reliability of a standardized, dynamic trunk muscle strength test: experiences with healthy male elite athletes. Swiss J. Sports Med. Sports Traumatol 2001; 49: 67-72
- 21 Plisky PJ, Rauh MJ, Kaminski TW. et al. Star excursion balance test as a predictor of lower extremity injury in high school basketball players. J Orthop Sports Phys Ther
- 22 Filipa A, Byrnes R, Paterno MV. et al. Neuromuscular training improves performance on the star excursion balance test in young female athletes. J Orthop Sports Phys Ther
- 23 Soper C, Hume PA. Reliability of power output during rowing changes with ergometer type and race distance. Sports Biomech
- 24 Hinkle DE, Wiersma W, Jurs SG. Applied statistics for the behavioral sciences. Princeton, N.J.: Recording for the Blind & Dyslexic; 2004
- 25 Engebretsen L, Steffen K, Bahr R. et al. The international olympic committee consensus statement on age determination in high-level young athletes. British journal of sports medicine
- 26 Jensen K, Johansen L, Secher NH. Influence of body mass on maximal oxygen uptake: effect of sample size. Eur J Appl Physiol
- 27 Mahlo F. Die Struktur konditioneller Leistungsvoraussetzungen und das Krafttraining von Rudersportlern/innen der Weltspitze. Leistungssport 1992; 22 (03) 25-28
- 28 Ling CHY, Craen AJM de, Slagboom PE. et al. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr
- 29 Bellace JV, Healy D, Besser MP. et al. Validity of the dexter evaluation system's jamar dynamometer attachment for assessment of hand grip strength in a normal population. Journal of Hand Therapy
- 30 Glatthorn JF, Gouge S, Nussbaumer S. et al. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J Strength Cond Res