Subscribe to RSS
DOI: 10.1055/a-1533-3823
Synthesis of Depsipeptides via Isocyanide-Based Consecutive Bargellini–Passerini Multicomponent Reactions
This work has been supported by the Research Council of Shahid Beheshti University and the RUDN University Strategic Academic Leadership Program (A. Shaabani).
Abstract
An efficient and straightforward approach has been established for the preparation of a new class of depsipeptide structures via isocyanide-based consecutive Bargellini–Passerini multicomponent reactions. 3-Carboxamido-isobutyric acids bearing an amide bond were obtained via Bargellini multicomponent reaction from isocyanides, acetone, and chloroform in the presence of sodium hydroxide. Next, via a Passerini multicomponent-reaction strategy, a new class of depsipeptides was synthesized using the Bargellini reaction products, isocyanides, and aldehydes. The depsipeptides thus prepared have more flexible structures than their pseudopeptidic analogues.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1533-3823.
- Supporting Information
- CIF File
Publication History
Received: 18 May 2021
Accepted after revision: 18 June 2021
Accepted Manuscript online:
22 June 2021
Article published online:
07 July 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Lenci E, Trabocchi A. Chem. Soc. Rev. 2020; 49: 3262
- 1b Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Drug Discov. Today 2010; 15: 40
- 2 Nielsen PE. Pseudo-Peptides in Drug Discovery . Wiley-VCH; Weinheim: 2004
- 3 Avan I, Hall CD, Katritzky AR. Chem. Soc. Rev. 2014; 43: 3575
- 4a Abdelraheem EM, Kurpiewska K, Kalinowska-Tłuścik J, Dömling A. J. Org. Chem. 2016; 81: 8789
- 4b Bucci R, Dapiaggi F, Macut H, Pieraccini S, Sironi M, Gelmi ML, Erba E, Pellegrino S. Amino Acids 2020; 52: 15
- 5 Kang YK, Byun BJ. J. Phys. Chem. B 2008; 112: 9126
- 6a Ballard C, Yu H, Wang B. Curr. Med. Chem. 2002; 9: 471
- 6b Sarabia F, Chammaa S, Ruiz AS, Ortiz LM, Herrera FL. Curr. Med. Chem. 2004; 11: 1309
- 6c Biswas S, Avan I, Basak AK, Abo-Dya NE, Asiri A, Katritzky AR. Amino Acids 2013; 45: 159
- 7 VanderMolen KM, McCulloch W, Pearce CJ, Oberlies NH. J. Antibiot. 2011; 64: 525
- 8 Liu C, Kelly GT, Watanabe CM. Org. Lett. 2006; 8: 1065
- 9 Jaitzig J, Li J, Süssmuth RD, Neubauer P. ACS Synth. Biol. 2014; 3: 432
- 10a Dömling A. Chem. Rev. 2006; 106: 17
- 10b Wessjohann LA, Rhoden CR, Rivera DG, Vercillo OE. Cyclic Peptidomimetics and Pseudopeptides from Multicomponent Reactions . In Synthesis of Heterocycles via Multicomponent Reactions I . Springer; Berlin, Heidelberg: 2010: 199
- 10c Khalesi M, Halimehjani AZ, Franz M, Schmidtmann M, Martens J. Amino Acids 2019; 51: 263
- 11a Pelliccia S, Alfano IA, Galli U, Novellino E, Giustiniano M, Tron GC. Symmetry 2019; 11: 798
-
11b
Fouad MA,
Abdel-Hamid H,
Ayoup MS.
RSC Adv. 2020; 10: 42644
- 11c Farhid H, Khodkari V, Nazeri MT, Javanbakht S, Shaabani A. Org. Biomol. Chem. 2021; 19: 3318
- 12a Gouge V, Jubault P, Quirion J.-C. Tetrahedron Lett. 2004; 45: 773
- 12b Szczesniak P, Maziarz E, Stecko S, Furman B. J. Org. Chem. 2015; 80: 3621
- 12c Peshkov AA, Peshkov VA, Pereshivko OP, Van der Eycken EV. Tetrahedron 2015; 71: 3863
- 12d Nazeri MT, Nowee AB, Shaabani A. New J. Chem. 2021; 45: 3479
- 12e Nazeri MT, Farhid H, Mohammadian R, Shaabani A. ACS Comb. Sci. 2020; 22: 361
- 13 Reza KazemizadehA, Ramazani A. Curr. Org. Chem. 2012; 16: 418
- 14a Kumar B, Maity J, Shankar B, Kumar S, Prasad AK. Carbohydr. Res. 2021; 500: 108236
- 14b Gulevich AV, Shpilevaya IV, Nenajdenko VG. Eur. J. Org. Chem. 2009; 3801
- 14c Rostovskii NV, Koronatov AN, Sakharov PA, Agafonova AV, Novikov MS, Khlebnikov AF, Rogacheva EV, Kraeva LA. Org. Biomol. Chem. 2020; 18: 9448
- 14d Zarezin DP, Shmatova OI, Nenajdenko VG. Org. Biomol. Chem. 2018; 16: 5987
- 15a Al-Horani RA, Desai UR. Tetrahedron 2012; 68: 2027
- 15b Clayden J, Moran WJ, Edwards PJ, LaPlante SR. Angew Chem. Int. Ed. 2009; 48: 6398
- 15c Glunz PW. Bioorg Med. Chem. Lett. 2018; 28: 53
-
16a
Bariwal J,
Kaur R,
Voskressensky LG,
Van der Eycken EV.
Front. Chem. 2018; 6: 557
- 16b Sharma UK, Sharma N, Vachhani DD, Van der Eycken EV. Chem. Soc. Rev. 2015; 44: 1836
- 16c Mohammadkhani L, Heravi MM. Mol. Diversity 2020; 24: 841
- 17a Zhi S, Ma X, Zhang W. Org. Biomol. Chem. 2019; 17: 7632
- 17b Zarganes Tzitzikas T, Chandgude AL, Dömling A. Chem. Rec. 2015; 15: 981
- 17c Dömling A. Curr. Opin. Chem. Biol. 2000; 4: 318
- 17d Heublein N, Moore JS, Smith CD, Jensen KF. RSC Adv. 2014; 4: 63627
- 17e Yang L, Zhang Z, Cheng B, You Y, Wu D, Hong C. Sci. China Chem. 2015; 58: 1734
- 18a Nazeri MT, Mohammadian R, Farhid H, Shaabani A, Notash B. Tetrahedron Lett. 2020; 61: 151408
- 18b Shaabani S, Shaabani A, Ng SW. ACS Comb. Sci. 2014; 16: 176
- 18c Hooshmand SE, Ghadari R, Mohammadian R, Shaabani A, Khavasi HR. ChemistrySelect 2019; 4: 11893
- 18d Farhid H, Nazeri MT, Shaabani A, Armaghan M, Janiak C. Amino Acids 2021; 53: 1
- 19a Giustiniano M, Pelliccia S, Galli U, Amato J, Travagin F, Novellino E, Tron GC. J. Org. Chem. 2016; 81: 11467
- 19b Serafini M, Murgia I, Giustiniano M, Pirali T, Tron GC. Molecules 2021; 26: 558
- 20 Pirrung MC, Sarma KD. J. Am. Chem. Soc. 2004; 126: 444
- 21 Pirrung MC, Sarma KD. Tetrahedron 2005; 61: 11456