Subscribe to RSS
DOI: 10.1055/a-1534-2599
Integrating Combined First Trimester Screening for Preeclampsia into Routine Ultrasound Examination
Integration von kombiniertem Ersttrimester-Screening auf Präeklampsie in die routinemäßige UltraschalluntersuchungAbstract
Introduction The Fetal Medicine Foundation (FMF) London has developed a first trimester screening algorithm for preeclampsia (PE), based on maternal characteristics and past risk factors, mean arterial pressure (MAP), uterine artery pulsatility index (UtA-PI), and placental growth factor (PlGF). The aim of this study was to determine the feasibility of integrating PE screening into routine practice.
Material and Methods All pregnancies with a fetal crown-rump length of 45 – 84 mm presenting to our ultrasound department between January 2014 and September 2020 were included in this analysis. Screening for PE was offered to singleton pregnancies only. The number of screening tests performed in the eligible population was assessed and the reasons for missed screenings identified with the help of the electronic clinical database. SPSS Statistics 25 and GraphPad version 8.0 for Windows were used for statistical analysis.
Results 6535 pregnancies were included, 4510 (69.0%) of which were screened for PE. The percentage of patients being offered PE screening increased over the years from 63.1 to 96.7% (rs = 0.96; p = 0.003), while the rate of screenings performed in eligible patients remained stable at a median [range] of 86.2% [78.0 – 91.8%] (p = ns). 2025 (31.0%) pregnancies were not screened for PE, 1306 (64.5%) because they were not eligible for screening. 145 (2.2%) women explicitly declined PE screening; their background risk was lower than that of women who accepted screening.
Conclusion Our study shows that integration of PE screening into the routine first trimester ultrasound scan is feasible and widely accepted by pregnant women and health care providers.
Zusammenfassung
Einleitung Die Fetal Medicine-Stiftung (FMF) in London hat einen Algorithmus für ein Ersttrimester-Screening auf Präeklampsie (PE) entwickelt, das auf maternalen Merkmalen und Risikofaktoren in der Anamnese, dem mittleren arteriellen Druck (MAP), dem Pulsatilitätsindex der A. uterina (UtA-PI) sowie dem plazentaren Wachstumsfaktor (PlGF) basiert. Ziel dieser Studie war es, die Machbarkeit einer Integration von PE-Screening in die klinische Praxis zu ermitteln.
Material und Methoden Alle Schwangerschaften mit einer fetalen Scheitel-Steiß-Länge von 45 bis 84 mm, die sich zwischen Januar 2014 und September 2020 in der Ultraschallabteilung vorstellten, wurden in dieser Analyse aufgenommen. Ein PE-Screening wurde nur Frauen mit Einlingsschwangerschaften angeboten. Die Anzahl der in der teilnahmeberechtigten Population durchgeführten Screeningtests wurde evaluiert, und die Gründe für nicht erfolgte Untersuchungen wurden mithilfe der elektronischen Datenbank der Klinik identifiziert. SPSS Statistics 25 und GraphPad Version 8.0 für Windows wurden für die statistische Analyse verwendet.
Ergebnisse Insgesamt wurden 6535 Schwangerschaften in die Studie aufgenommen, davon wurden 4510 (69,0%) auf das Risiko einer Präeklampsie getestet. Der Prozentsatz von Patientinnen, denen PE-Screening angeboten wurde, nahm über die Jahre von 63,1 auf 96,7% zu (rs = 0,96; p = 0,003), wohingegen der Prozentsatz der Untersuchungen, die bei infrage kommenden Patientinnen durchgeführt wurde, bei einem Mittelwert [Bandbreite] von 86,2% [78,0 – 91,8%] (p = ns) stabil blieb. 2025 (31,0%) Schwangerschaften wurden nicht auf das PE-Risiko untersucht, davon 1306 (64,5%), weil sie die Kriterien für ein Screening nicht erfüllten. 145 (2,2%) Frauen lehnten ein PE-Screening explizit ab; ihr Hintergrundrisiko war niedriger als das Risko bei den Frauen, die ein PE-Screening angenommen haben.
Schlussfolgerung Unsere Studie zeigt, dass die Integration von PE-Screening in routinemäßig durchgeführten Ersttrimester-Ultraschalluntersuchungen machbar ist, und dass sie von Schwangeren und Gesundheitsdienstleistern weithin akzeptiert wird.
Publication History
Received: 07 March 2021
Accepted after revision: 22 June 2021
Article published online:
03 March 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Hutcheon JA, Fellow P. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol 2011; 25: 391-403
- 2 Mol BWJ, Roberts CT, Thangaratinam S. et al. Preeclampsia. Lancet 2016; 387: 999-1011
- 3 Poon LC, Shennan A, Hyett JA. et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet 2019; 145 (Suppl. 01) 1-33
- 4 Sibai B, Dekker G, Kupferminc M. et al. Pre-eclampsia. Lancet 2005; 365: 785-799
- 5 Bujold E, Roberge S, Lacasse Y. et al. Prevention of Preeclampsia and Intrauterine Growth Restriction With Aspirin Started in Early Pregnancy – A Meta-Analysis. Obstet Gynaecol 2010; 116: 402-414
- 6 Akolekar R, Syngelaki A, Poon L. et al. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther 2013; 33: 8-15
- 7 Wright D, Tan MY, OʼGorman N. et al. Predictive performance of the competing risk model in screening for preeclampsia. Am J Obstet Gynecol 2019; 220: 199.e1-199.e13
- 8 OʼGorman N, Wright D, Syngelaki A. et al. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am J Obstet Gynecol 2016; 214: 103.e1-103.e12
- 9 Wright D, Syngelaki A, Akolekar R. et al. Competing risks model in screening for preeclampsia by maternal characteristics and medical history. Am J Obstet Gynecol 2015; 213: 62.e1-62.e10
- 10 Poon LC, Rolnik DL, Tan MY. et al. ASPRE trial: incidence of preterm preeclampsia in patients fulfilling ACOG and NICE criteria according to risk by FMF algorithm. Ultrasound Obstet Gynecol 2018; 51: 738-742
- 11 Tan MY, Wright D, Syngelaki A. et al. Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: results of SPREE. Ultrasound Obstet Gynecol 2018; 51: 743-750
- 12 Rolnik DL, Wright D, Poon LC. et al. ASPRE trial: performance of screening for preterm pre-eclampsia. Ultrasound Obstet Gynecol 2017; 50: 492-495
- 13 Mosimann B, Amylidi-Mohr SK, Surbek D. et al. First trimester screening for preeclampsia – a systematic review. Hypertens Pregnancy 2020; 39: 1-11
- 14 Rolnik DL, Wright D, Poon LC. et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med 2017; 377: 613-622
- 15 Public Health England. NHS Fetal Anomaly Screening Programme (FASP): programme overview (01.01.2013). Accessed February 01, 2021 at: https://www.gov.uk/guidance/fetal-anomaly-screening-programme-overview%23screening-test-downs-edwards-and-pataus-syndromes
- 16 Tringham GM, Nawaz TS, Holding S. et al. Introduction of first trimester combined test increases uptake of Downʼs syndrome screening. Eur J Obstet Gynecol Reprod Biol 2011; 159: 95-98
- 17 Mosimann B, Pfiffner C, Amylidi-Mohr S. et al. First Trimester Combined Screening for Preeclampsia and Small for Gestational Age – a Single Centre Experience and Validation of the FMF Screening Algorithm. Swiss Medical Weekly 2017; 147: w14498
- 18 Nikčević AV, Dodd Z, Prior J. et al. Reasons for accepting or declining participation in the ASPRE trial: A qualitative study with women at high risk of preterm pre-eclampsia. Prenat Diag 2019; 39: 1127-1135
- 19 Amylidi-Mohr S, Kubias J, Neumann S. et al. Reducing the Risk of Preterm Preeclampsia: Comparison of Two First Trimester Screening and Treatment Strategies in a Single Centre in Switzerland. Geburtshilfe Frauenheilkd 2021;
- 20 Kagan KO, Wright D, Valencia C. et al. Screening for trisomies 21, 18 and 13 by maternal age, fetal nuchal translucency, fetal heart rate, free beta-hCG and pregnancy-associated plasma protein-A. Hum Reprod 2008; 23: 1968-1975
- 21 Santorum M, Wright D, Syngelaki A. et al. Accuracy of first-trimester combined test in screening for trisomies 21, 18 and 13. Ultrasound Obstet Gynecol 2017; 49: 714-720
- 22 Ochsenbein N, Burkhardt T, Raio L. Pränatale nicht-invasive Risikoabschätzung fetaler Aneuploidien; Expertenbrief No 52. sggg.ch. 03/2018. Accessed February 01, 2021 at: https://www.sggg.ch/fileadmin/user_upload/20180411_52_Praenatale_nicht-invasive_Risikoabschaetzung_fetaler_Aneuploidien_07032018.pdf
- 23 Baer R, Currier R, Norton M. Obstetric, Perinatal, and Fetal Outcomes in Pregnancies With False-Positive Integrated Screening. Obest Gynaecol 2014; 123: 603-609
- 24 Krispin E, Kushnir A, Shemer A. et al. Abnormal Nuchal Translucency Followed By Normal Microarray Analysis Is Associated With Placental Pathology-Related Complications. Prenat Diagn 2021; 41: 855-860
- 25 Wali S, Wild M. Maternal complications of fetal triploidy: a case report. BMJ Case Rep 2020; 13: e236950
- 26 Dotters-Katz SK, Humphrey WM, Senz KL. et al. Trisomy 13 and the risk of gestational hypertensive disorders: a population-based study. J Matern Fetal Neonatal Med 2018; 31: 1951-1955
- 27 Mostello D, Kallogjeri D, Tungsiripat R. et al. Recurrence of preeclampsia: effects of gestational age at delivery of the first pregnancy, body mass index, paternity, and interval between births. Am J Obstet Gynecol 2008; 199: 55.e1-55.e7
- 28 Robillard P-Y, Dekker G, Scioscia M. et al. Increased BMI has a linear association with late-onset preeclampsia: A population-based study. PLoS One 2019; 14: e0223888
- 29 Poon CF, Tse WC, Kou KO. et al. Uptake of noninvasive prenatal testing in chinese women following positive down syndrome screening. Fetal Diagn Ther 2015; 37: 141-147
- 30 Shahhosseini Z, Arabi H, Salehi A. et al. Factors Affecting Improved Prenatal Screening: A Narrative Review. Glob J Health Sci 2016; 8: 160-165
- 31 Gitsels JT, Verhoeven PS, Manniën J. et al. Factors affecting the uptake of prenatal screening tests for congenital anomalies; a multicentre prospective cohort study. BMC Pregnancy Childbirth 2014; 14: 264
- 32 Aune I, Möller A. ‘I want a choice, but I donʼt want to decide’ - A qualitative study of pregnant womenʼs experiences regarding early ultrasound risk assessment for chromosomal anomalies. Midwifery 2012; 28: 14-23
- 33 Ekelund CK, Petersen OB, Skibsted L. et al. First-trimester screening for trisomy 21 in Denmark: implications for detection and birth rates of trisomy 18 and trisomy 13. Ultrasound Obstet Gynecol 2011; 38: 140-144
- 34 Gadsbøll K, Petersen OB, Gatinois V. Current use of noninvasive prenatal testing in Europe, Australia and the USA: A graphical presentation. Acta Obstet Gynecol Scand 2020; 99: 722-730
- 35 Van Den Berg M, Timmermans DRM, Ten Kate LP. et al. Are pregnant women making informed choices about prenatal screening?. Genet Med 2005; 7: 332-338
- 36 Chiang HH, Chao MY, Yuh YS. Informed choice of pregnant women in prenatal screening tests for Downʼs syndrome. J Med Ethics 2006; 32: 273-277
- 37 Müller MA, Bleker OP, Bonsel GJ. et al. Womenʼs opinions on the offer and use of nuchal translucency screening for Down syndrome. Prenat Diagn 2006; 26: 105-111
- 38 De-Kun L, Karlberg K, Wi S. et al. Factors influencing womenʼs acceptance of prenatal screening tests. Prenat Diagn 2008; 28: 1136-1143