Subscribe to RSS
DOI: 10.1055/a-1535-2341
Pulmonary Imaging of Immunocompromised Patients during Hematopoietic Stem Cell Transplantation using Non-Contrast-Enhanced Three-Dimensional Ultrashort Echo Time (3D-UTE) MRI
Die pulmonale MRT unter Verwendung einer 3D-UTE-Sequenz zur kontrastmittelfreien Lungenbildgebung von immunsupprimierten Patienten unter Stammzelltransplantation Supported by: Deutsche Forschungsgemeinschaft VE1008/1–1, KO 2938/5–1Supported by: The Department of Diagnostic and Interventional Radiology receives a research grant from Siemens Healthcare GmbH
Abstract
Purpose To evaluate the feasibility of non-contrast-enhanced three-dimensional ultrashort echo time (3D-UTE) MRI for pulmonary imaging in immunocompromised patients during hematopoietic stem cell transplantation (HSCT).
Methods MRI was performed using a stack-of-spirals 3D-UTE sequence (slice thickness: 2.34mm; matrix: 256 × 256; acquisition time: 12.7–17.6 seconds) enabling imaging of the entire thorax within single breath-holds. Patients underwent MRI before HSCT initiation, in the case of periprocedural pneumonia, before discharge, and in the case of re-hospitalization. Two readers separately assessed the images regarding presence of pleural effusions, ground glass opacities (GGO), and consolidations on a per lung basis. A T2-weighted (T2w) multi-shot Turbo Spin Echo sequence (BLADE) was acquired in coronal orientation during breath-hold (slice thickness: 6.00mm; matrix: 320 × 320; acquisition time: 3.1–5.5 min) and read on a per lesion basis. Low-dose CT scans in inspiration were used as reference and were read on a per lung basis. Only scans performed within a maximum of three days were included in the inter-method analyses. Interrater agreement, sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of 3D-UTE MRI were calculated.
Results 67 MRI scans of 28 patients were acquired. A reference CT examination was available for 33 scans of 23 patients. 3D-UTE MRI showed high sensitivity and specificity regarding pleural effusions (n = 6; sensitivity, 92 %; specificity, 100 %) and consolidations (n = 22; sensitivity 98 %, specificity, 86 %). Diagnostic performance was lower for GGO (n = 9; sensitivity, 63 %; specificity, 84 %). Accuracy rates were high (pleural effusions, 98 %; GGO, 79 %; consolidations 94 %). Interrater agreement was substantial for consolidations and pleural effusions (κ = 0.69–0.82) and moderate for GGO (κ = 0.54). Compared to T2w imaging, 3D-UTE MRI depicted the assessed pathologies with at least equivalent quality and was rated superior regarding consolidations and GGO in ~50 %.
Conclusion Non-contrast 3D-UTE MRI enables radiation-free assessment of typical pulmonary complications during HSCT procedure within a single breath-hold. Yet, CT was found to be superior regarding the identification of pure GGO changes.
Key Points:
-
3D-UTE MRI of the thorax can be acquired within a single breath-hold.
-
3D-UTE MRI provides diagnostic imaging of pulmonary consolidations and pleural effusions.
-
3D-UTE sequences improve detection rates of ground glass opacities on pulmonary MRI.
-
3D-UTE MRI depicts pulmonary pathologies at least equivalent to T2-weighted Blade sequence.
Citation Format
-
Metz C, Böckle D, Heidenreich JF et al. Pulmonary Imaging of Immunocompromised Patients during Hematopoietic Stem Cell Transplantation using Non-Contrast-Enhanced Three-Dimensional Ultrashort Echo Time (3D-UTE) MRI. Fortschr Röntgenstr 2022; 194: 39 – 48
Zusammenfassung
Ziel Evaluation einer 3-dimensionalen MRT-Sequenz mit ultrakurzer Echozeit (3D-UTE) für die pulmonale Bildgebung immunsupprimierter Patienten unter Stammzelltransplantation.
Material und Methoden Die Datenaufnahme erfolgte mit einer 3D-UTE-Sequenz (Schichtdicke 2,34mm; Matrix 256 × 256; Akquisitionszeit 12,7–17,6 s) unter Verwendung einer Stack-of-spirals-Trajektorie innerhalb eines Atemstopps. Die Untersuchungen wurden vor Beginn der Stammzelltransplantation, bei periprozeduralen Pneumonien, vor Entlassung und im Falle einer Rehospitalisierung durchgeführt. Die Datensätze wurden auf vorliegende Pleuraergüsse, Milchglasinfiltrate und Konsolidierungen von 2 Radiologen auf Lungenbasis bewertet. Zum Vergleich wurde eine klinische T2-Bildgebung herangezogen (BLADE, Schichtdicke 6,00mm; Matrix 320 × 320; Akquisitionszeit 3,1–5,5 min) und im Atomstopp in koronarer Schichtführung akquiriert. Klinisch indizierte Low-Dose-CT-Untersuchungen in Inspiration wurden als Referenz herangezogen und auf Lungenbasis evaluiert. Es wurden nur Untersuchungen eingeschlossen, die innerhalb von maximal 3 Tagen angefertigt wurden. Interrater-Übereinstimmung, Sensitivität, Spezifität, positiver und negativer prädiktiver Wert sowie diagnostische Genauigkeit der 3D-UTE-MRT wurden ermittelt.
Ergebnisse 67 MR-Scans von 28 Patienten wurden akquiriert. Zu 33 MRT-Untersuchungen von 23 Patienten lag eine Referenz-CT vor. Die 3D-UTE zeigte eine hohe Sensitivität und Spezifität in der Detektion von Pleuraergüssen (n = 6; Sensitivität 92 %; Spezifität 100 %) und Konsolidierungen (n = 22; Sensitivität 98 %; Spezifität 86 %). Hinsichtlich Milchglasinfiltraten (n = 9; Sensitivität 63 %; Spezifität 84 %) war die diagnostische Leistungsfähigkeit geringer. Die Genauigkeit der 3D-UTE-MRT war hoch (Pleuraergüsse, 98 %; Milchglasinfiltrate, 79 %; Konsolidierungen, 94 %). Die Interrater-Übereinstimmung war für Pleuraergüsse und Konsolidierungen substanziell (κ = 0,69–0,82), für Milchglasinfiltrate moderat (κ = 0,54). Verglichen mit der T2-Sequenz zeigte die 3D-UTE-MRT die pulmonalen Pathologien in mindestens gleichwertiger Abbildungsqualität und wurde bei Konsolidierungen und Milchglasinfiltraten in ~50 % der Fälle als überlegen bewertet.
Schlussfolgerung Die kontrastmittelfreie 3D-UTE-MRT ermöglicht eine strahlungsfreie und diagnostische Darstellung typischer pulmonaler Komplikationen von Patienten unter Stammzelltransplantation. Die CT zeigte sich zur Erkennung reiner Milchglasinfiltrate überlegen.
Kernaussagen:
-
Die 3D-UTE-MRT des gesamten Thorax kann innerhalb eines Atemstopps akquiriert werden.
-
Die 3D-UTE-MRT ermöglicht die diagnostische Bildgebung von Pleuraergüssen und Konsolidierungen.
-
Die 3D-UTE-MRT verbessert die Detektionsraten von Milchglasinfiltraten in der pulmonalen MRT.
-
Die 3D-UTE-Bildgebung stellt pulmonale Pathologien mindestens gleichwertig zur T2-Blade dar.
Key words
thorax - infection - ultrashort echo time - magnetic resonance imaging - pulmonary imaging - hematopoietic stem cell transplantationPublication History
Received: 31 December 2020
Accepted: 03 June 2021
Article published online:
14 October 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Diab M, ZazaDitYafawi J, Soubani AO. Major Pulmonary Complications After Hematopoietic Stem Cell Transplant. Exp Clin Transplant 2016; 14: 259-270
- 2 Richenberg J, Harvey C. The utility of CT in imaging chest infections in HIV-negative patients. Curr Opin Pulm Med 1999; 5: 179-184
- 3 Young AY, Leiva Juarez MM, Evans SE. Fungal Pneumonia in Patients with Hematologic Malignancy and Hematopoietic Stem Cell Transplantation. Clin Chest Med 2017; 38: 479-491
- 4 De Pauw B, Walsh TJ, Donnelly JP. et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 2008; 46: 1813-1821
- 5 Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med 2007; 357: 2277-2284
- 6 Ekinci A, Yucel Ucarkus T, Okur A. et al. MRI of pneumonia in immunocompromised patients: comparison with CT. Diagn Interv Radiol 2017; 23: 22-28
- 7 Johns CS, Swift AJ, Rajaram S. et al. Lung perfusion: MRI vs. SPECT for screening in suspected chronic thromboembolic pulmonary hypertension. J Magn Reson Imaging 2017; 46: 1693-1697
- 8 Veldhoen S, Weng AM, Knapp J. et al. Self-gated Non-Contrast-enhanced Functional Lung MR Imaging for Quantitative Ventilation Assessment in Patients with Cystic Fibrosis. Radiology 2017; 283: 242-251
- 9 Sodhi KS, Sharma M, Lee EY. et al. Diagnostic Utility of 3T Lung MRI in Children with Interstitial Lung Disease: A Prospective Pilot Study. Acad Radiol 2018; 25: 380-386
- 10 Wielputz MO, Triphan SMF, Ohno Y. et al. Outracing Lung Signal Decay – Potential of Ultrashort Echo Time MRI. Rofo 2019; 191: 415-423
- 11 Yu J, Xue Y, Song HK. Comparison of lung T2* during free-breathing at 1.5 T and 3.0 T with ultrashort echo time imaging. Magn Reson Med 2011; 66: 248-254
- 12 Higano NS, Fleck RJ, Spielberg DR. et al. Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT. J Magn Reson Imaging 2017; 46: 992-1000
- 13 Ohno Y, Koyama H, Yoshikawa T. et al. Standard-, Reduced-, and No-Dose Thin-Section Radiologic Examinations: Comparison of Capability for Nodule Detection and Nodule Type Assessment in Patients Suspected of Having Pulmonary Nodules. Radiology 2017; 284: 562-573
- 14 Burris NS, Johnson KM, Larson PE. et al. Detection of Small Pulmonary Nodules with Ultrashort Echo Time Sequences in Oncology Patients by Using a PET/MR System. Radiology 2016; 278: 239-246
- 15 Wielputz MO, Lee HY, Koyama H. et al. Morphologic Characterization of Pulmonary Nodules With Ultrashort TE MRI at 3T. Am J Roentgenol 2018; 210: 1216-1225
- 16 Nagel SN, Wyschkon S, Schwartz S. et al. Can magnetic resonance imaging be an alternative to computed tomography in immunocompromised patients with suspected fungal infections? Feasibility of a speed optimized examination protocol at 3 Tesla. Eur J Radiol 2016; 85: 857-863
- 17 Ohno Y, Koyama H, Yoshikawa T. et al. Pulmonary high-resolution ultrashort TE MR imaging: Comparison with thin-section standard- and low-dose computed tomography for the assessment of pulmonary parenchyma diseases. J Magn Reson Imaging 2016; 43: 512-532
- 18 Mugler JP MC, Pfeuffer J, Stemmer A. et al Accelerated Stack-of-Spirals Breath-hold UTE Lung Imaging. Proc Intl Soc Mag Reson Med. 2017 doi:4904
- 19 Qian Y, Boada FE. Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging. Magn Reson Med 2008; 60: 135-145
- 20 Lustig M, Pauly JM. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 2010; 64: 457-471
- 21 Hansell DM, Bankier AA, MacMahon H. et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008; 246: 697-722
- 22 Attenberger UI, Morelli JN, Henzler T. et al. 3 Tesla proton MRI for the diagnosis of pneumonia/lung infiltrates in neutropenic patients with acute myeloid leukemia: initial results in comparison to HRCT. Eur J Radiol 2014; 83: e61-e66
- 23 Liszewski MC, Gorkem S, Sodhi KS. et al. Lung magnetic resonance imaging for pneumonia in children. Pediatr Radiol 2017; 47: 1420-1430
- 24 Torres L, Kammerman J, Hahn AD. et al. “Structure-Function Imaging of Lung Disease Using Ultrashort Echo Time MRI”. Acad Radiol 2019; 26: 431-441
- 25 Yan C, Tan X, Wei Q. et al. Lung MRI of invasive fungal infection at 3 Tesla: evaluation of five different pulse sequences and comparison with multidetector computed tomography (MDCT). Eur Radiol 2015; 25: 550-557
- 26 Eibel R, Herzog P, Dietrich O. et al. Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology 2006; 241: 880-891
- 27 Rieger C, Herzog P, Eibel R. et al. Pulmonary MRI--a new approach for the evaluation of febrile neutropenic patients with malignancies. Support Care Cancer 2008; 16: 599-606
- 28 Letourneau AR, Issa NC, Baden LR. Pneumonia in the immunocompromised host. Curr Opin Pulm Med 2014; 20: 272-279
- 29 Lampichler K. [Role of imaging procedures in clarification of complications of pneumonia]. Radiologe 2017; 57: 29-34
- 30 Petrusevska-Marinkovic S, Kondova-Topuzovska I, Milenkovic Z. et al. Clinical, Laboratory and Radiographic Features of Patients with Pneumonia and Parapneumonic Effusions. Open Access Maced J Med Sci 2016; 4: 428-434