Synthesis 2021; 53(23): 4313-4326
DOI: 10.1055/a-1538-8344
short review

Application of Industrially Relevant HydroFluoroOlefin (HFO) Gases in Organic Syntheses

Bálint Varga
a   ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117 Budapest, Hungary
,
János T. Csenki
a   ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117 Budapest, Hungary
,
Balázs L. Tóth
a   ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117 Budapest, Hungary
,
Ferenc Béke
a   ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117 Budapest, Hungary
,
a   ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117 Budapest, Hungary
,
b   Servier Research Institute of Medicinal Chemistry, Záhony utca 7, 1031 Budapest, Hungary
› Author Affiliations
The authors thank the support of National Research, Development and Innovation Office (Grant No. K132077), ELTE Thematic Excellence Programme 2020 Supported by National Research, Development and Innovation Office – TKP2020-IKA-05, and UNKP-20-3 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund.


Abstract

Hydrofluoroolefin (HFO) gases are state-of-the-art cooling agents with widespread household and industrial applications. Considering their structural benefits these fluorous feedstocks have gained the attention of organic chemists in the last couple of years. In this short review we summarized the existing synthetic transformations of these gaseous starting material and present their applicability in the synthesis of fluorine-containing organic molecules, which have potential importance as building blocks and reagents for diverse syntheses.

1 Introduction

2 Addition Reactions

3 Substitutions

4 Organometallic Chemistry

4.1 Organolithium Compounds

4.2 Organometallic Complexes

4.3 Silicon Organic Chemistry

4.4 Boron Organic Chemistry

4.5 Palladium-Catalyzed Transformations

4.6 Metathesis

4.7 Hydroesterification, Hydroformylation

5 Conclusions



Publication History

Received: 09 April 2021

Accepted after revision: 28 June 2021

Accepted Manuscript online:
28 June 2021

Article published online:
11 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Balázs L. Tóth current address: Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
    • 2a Fried J, Sabo EF. J. Am. Chem. Soc. 1953; 75: 2273
    • 2b Fried J, Sabo EF. J. Am. Chem. Soc. 1954; 76: 1455
    • 2c Robinson RC. V. JAMA, J. Am. Med. Assoc. 1955; 157: 1300
    • 3a Johnson BM, Shu Y.-Z, Zhuo X, Meanwell NA. J. Med. Chem. 2020; 63: 6315
    • 3b Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
    • 3c Fujiwara T, O’Hagan D. J. Fluorine Chem. 2014; 167: 16
    • 3d Han J, Remete AM, Dobson LS, Kiss L, Izawa K, Moriwaki H, Soloshonok VA, O’Hagan D. J. Fluorine Chem. 2020; 239: 109639
    • 3e Mei H, Remete AM, Zou Y, Moriwaki H, Fustero S, Kiss L, Soloshonok VA, Han J. Chin. Chem. Lett. 2020; 31: 2401
    • 3f Wang J, Sánches-Rosello M, Aceny JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu J. Chem. Rev. 2014; 114: 2432
    • 3g Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Acena JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 3h Maienfisch P, Hall RG. Chimia 2004; 58: 93
    • 3i Gillis EP, Eastman KJ, Hill MD, Donnely DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 3j Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 3k Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 3l Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 3m Jeschke P. ChemBioChem 2004; 5: 570
  • 4 Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chem. Rev. 2021; 121: 4678
    • 5a Yerein DE, Bonesi S, Postigo A. Org. Biomol. Chem. 2016; 14: 8398
    • 5b Lectard S, Hamashima Y, Sodeoka M. Adv. Synth. Catal. 2010; 352: 2708
    • 5c O’Hagan D, Deng H. Chem. Rev. 2015; 115: 634
    • 5d Pihko PM. Angew. Chem. Int. Ed. 2006; 45: 544
    • 5e Kohlhepp SV, Gulder T. Chem. Soc. Rev. 2016; 45: 6270
    • 5f Szpera R, Moseley DF. J, Smith LB, Sterling AJ, Gouverneur V. Angew. Chem. Int. Ed. 2019; 58: 14824
    • 5g Lin A, Huehls CB, Yang J. Org. Chem. Front. 2014; 1: 434
    • 5h Testa C, Roger J, Fleurat-Lessard P, Hierso J.-C. Eur. J. Org. Chem. 2019; 233
    • 6a Li X, Shi X, Li X, Shi D. Beilstein J. Org. Chem. 2019; 15: 2213
    • 6b Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
    • 6c Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 6d Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
    • 6e Bizet V, Besset T, Ma J.-A, Cahard D. Curr. Top. Med. Chem. 2014; 14: 901
    • 6f Han Z.-Z, Zhang C.-P. Adv. Synth. Catal. 2020; 10: 11980
    • 6g Kawamura S, Sodeoka M. Bull. Chem. Soc. Jpn. 2019; 92: 1245
    • 6h Zhao Y, Liu F. Tetrahedron Lett. 2018; 59: 180
    • 6i Barata-Vallejo S, Bonesi SM, Postigo A. Org. Biomol. Chem. 2015; 13: 11153
    • 6j Lantaño B, Torviso MR, Bonesi SM, Barata-Vallejo S, Postigo A. Coord. Chem. Rev. 2015; 285: 76
    • 6k Bhaskaran RP, Babu BP. Adv. Synth. Catal. 2020; 362: 5219
    • 6l Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 6m Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
    • 6n Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 6o Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
    • 6p Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
    • 6q Ma J.-A, Cahard D. J. Fluorine Chem. 2007; 128: 975
    • 6r Pan X, Xia H, Wu J. Org. Chem. Front. 2016; 3: 1163
  • 7 Caron S. Org. Process Res. Dev. 2020; 24: 470
    • 8a Sicard AJ, Baker RT. Chem. Rev. 2020; 120: 9164
    • 8b Bellabarba RM. J. Fluorine Chem. 2021; 244: 109741
  • 9 Feiring AE. J. Org. Chem. 1980; 45: 1962
  • 10 Taguchi T, Tomizawa G, Nakajima M, Kobayashi Y. Chem. Pharm. Bull. 1985; 33: 4077
  • 11 Delacroix K, Perez M, Petit L. J. Fluorine Chem. 2020; 235: 109538
  • 12 Zhao B, Lu J.-Y, Li Y, Tu D.-H, Liu Z.-T, Liu Z.-W, Lu J. RSC Adv. 2015; 5: 101412
  • 13 Varga B, Tóth BL, Béke F, Csenki JT, Kotschy A, Novák Z. Org. Lett. 2021; 23: 4925
  • 14 Gaede B, Balthazor TM. J. Org. Chem. 1983; 48: 276
  • 15 Ojima I, Yatabe M, Fuchikami T. J. Org. Chem. 1982; 47: 2051
  • 16 Tanaka K, Mori T, Mitsuhashi K. Bull. Chem. Soc. Jpn. 1993; 66: 263
  • 17 Skalenko YA, Druzhenko TV, Denisenko AV, Samoilenko MV, Dacenko OP, Trofymchuk SA, Grygorenko OO, Tolmachev AA, Mykhailiuk PK. J. Org. Chem. 2018; 83: 6275
  • 18 Murray BJ, Marsh TG. F, Yufit DS, Fox MA, Harsányi A, Boulton LT, Sandford G. Eur. J. Org. Chem. 2020; 6236
    • 19a Kobayashi Y, Kumadaki I, Takahashi M, Yamauchi T. J. Fluorine Chem. 1982; 21: 73
    • 19b Takusari H, Okazaki S. Chem. Lett. 1984; 13: 885
    • 20a Kobayashi Y, Nagai T, Kumadaki I, Takahashi M, Yamauchi T. Chem. Pharm. Bull. 1984; 32: 4382
    • 20b Gyenes F, Purrington ST, Liu Y.-S. J. Org. Chem. 1999; 64: 1366
    • 20c Calvo B, Wuttke J, Braun T, Kemnitz E. ChemCatChem 2016; 8: 1945
  • 21 Meißner G, Kretschmar K, Braun T, Kemnitz E. Angew. Chem. Int. Ed. 2017; 56: 16338
  • 22 Lanzinger D, Höhlein IM, Weiß SB, Rieger B. J. Organomet. Chem. 2015; 778: 21
  • 23 Jaeger AD, Ehm C, Lentz D. Chem. Eur. J. 2018; 24: 6769
  • 24 Phillips NA, White AJ. P, Crimmin MR. Adv. Synth. Catal. 2019; 361: 3351
    • 25a Kraft BM, Jones WD. J. Am. Chem. Soc. 2002; 124: 8681
    • 25b Vela J, Smith JM, Yu Y, Ketterer NA, Flaschenriem CJ, Lachicotte RJ, Holland PL. J. Am. Chem. Soc. 2005; 127: 7857
    • 25c Rieth RD, Brennessel WW, Jones WD. Eur. J. Inorg. Chem. 2007; 2839
    • 25d Ahrens T, Teltewskoi M, Ahrens M, Braun T, Laubenstein R. Dalton Trans. 2016; 45: 17495
  • 26 Moritz FK, Lenz D. Angew. Chem. Int. Ed. 2010; 49: 2933
  • 27 Kuehnel MF, Holstein P, Kliche M, Krüger J, Matthies S, Nitsch D, Schutt J, Sparenberg M, Lentz D. Chem. Eur. J. 2012; 18: 10701
  • 28 Clot E, Megret C, Kraft BM, Eisenstein O, Jones WD. J. Am. Chem. Soc. 2004; 126: 5647
  • 29 Andrella NO, Xu N, Gabidullin BM, Ehm C, Baker RT. J. Am. Chem. Soc. 2019; 141: 11506
  • 30 Krüger J, Leppkes J, Ehm C, Lentz D. Chem. Asian J. 2016; 11: 3062
  • 31 Hiraoka Y, Kawasaki-Takasuka T, Morizawa Y, Yamazaki T. J. Fluorine Chem. 2015; 179: 71
  • 32 Yagupolskii YL, Pavlenko NV, Shelyazhenko SV, Filatov AA, Kremlev MM, Mushta AI, Gerus II, Peng S, Petrov VA, Nappa M. J. Fluorine Chem. 2015; 179: 134
  • 33 Murray BJ, Ball ED, Harsányi A, Sandford G. Eur. J. Org. Chem. 2019; 7666
  • 34 Kendrick DA, Kolb M. J. Fluorine Chem. 1989; 45: 265
  • 35 Ye F, Ge Y, Spannenberg A, Neumann H, Xu L.-W, Beller M. Nat. Commun. 2021; 12: 3257
    • 36a Fujita T, Ichitsuka T, Fuchibe K, Ichikawa J. Chem. Lett. 2011; 40: 986
    • 36b Ichitsuka T, Takanohashi T, Fujita T, Ichikawa J. J. Fluorine Chem. 2015; 170: 29
  • 37 Brisdon AK, Pritchard RG, Thomas A. Organometallics 2012; 31: 1341
  • 38 Tolman CA. J. Am. Chem. Soc. 1974; 96: 2780
  • 39 Dorta R, Stevens ED, Scott NM, Costabile C, Cavallo L, Hoff CD, Nolan SP. J. Am. Chem. Soc. 2005; 127: 2485
  • 40 Alluhaibi LM, Brisdon AK, Pritchard RG. J. Fluorine Chem. 2017; 203: 146
  • 41 Vela J, Vaddadi S, Cundari TR, Smith JM, Gregory EA, Lachicotte RJ, Flaschenriem CJ, Holland PL. Organometallics 2004; 23: 5226
  • 42 Bakewell C, White AJ. P, Crimmin MR. Angew. Chem. Int. Ed. 2018; 57: 6638
  • 44 Slaney ME, Anderson DJ, Ferguson MJ, McDonald R, Cowie M. Organometallics 2012; 31: 2286
  • 45 Black RE, Kilyanek SM, Reinhart ED, Jordan RF. Organometallics 2019; 38: 4250
  • 46 Wada S, Jordan RF. Angew. Chem. Int. Ed. 2017; 56: 1820
  • 47 Braun T, Noveski D, Neumann B, Stammler H.-G. Angew. Chem. Int. Ed. 2002; 41: 2745
  • 48 Noveski D, Braun T, Schulte M, Neumann B, Stammler H.-G. Dalton Trans. 2003; 4075
  • 49 Ohashi M, Shibata M, Ogoshi S. Angew. Chem. Int. Ed. 2014; 53: 13578
  • 50 Slaney ME, Anderson DJ, Ferguson MJ, McDonald R, Cowie M. J. Am. Chem. Soc. 2010; 132: 16544
  • 51 Braun T, Wehmeier F, Altenhöner K. Angew. Chem. Int. Ed. 2007; 46: 5321
  • 52 Braun T, Salomon MA, Altenhöner K, Teltewskoi M, Hinze S. Angew. Chem. Int. Ed. 2009; 48: 1818
  • 53 Trnka TM, Day MW, Grubbs RH. Angew. Chem. Int. Ed. 2001; 40: 3441
  • 54 VenkatRamani S, Schrock RR, Hoveyda AH, Müller P, Tsay C. Organometallics 2018; 37: 1641
  • 55 Hiyama T, Obayashi M, Sawahata M. Tetrahedron Lett. 1983; 24: 4113
  • 56 Fujita M, Obayashi M, Hiyama T. Tetrahedron 1988; 44: 4135
  • 57 Sakaguchi H, Ohashi M, Ogoshi S. Angew. Chem. Int. Ed. 2018; 57: 328
  • 58 Coates G, Tan HY, Klaff C, White AJ. P, Crimmin MR. Angew. Chem. Int. Ed. 2019; 58: 12514
  • 59 Larichev RB, Petrov VA, Grier GJ, Nappa MJ, Marshall WJ, Marchione AA, Dooley RJ. Org. Process Res. Dev. 2014; 18: 1060
  • 60 Pavlenko NV, Peng S, Petrov V, Jackson A, Sun X, Sprague L, Yagupolskii YL. Eur. J. Org. Chem. 2020; 5425
  • 61 Phillips JR, Stone FG. A. J. Chem. Soc. 1962; 94
  • 62 Brown HC, Chen G.-M, Jennings MP, Ramachandran PV. Angew. Chem. Int. Ed. 1999; 38: 2052
  • 63 Sakaguchi H, Uetake Y, Ohashi M, Niwa T, Ogoshi S, Hosoya T. J. Am. Chem. Soc. 2017; 139: 12855
  • 64 Phillips NA, Coates GJ, White AJ. P, Crimmin MR. Chem. Eur. J. 2020; 26: 5365
  • 65 Ramachandran PV, Jennings MP, Brown HC. Org. Lett. 1999; 1: 1399
  • 66 Fuchikami T, Yatabe M, Ojima I. Synthesis 1981; 365
  • 67 Casanti A, Gemoets HP. L, Motti E, Della Ca’ N, Noël T. Chem. Eur. J. 2018; 24: 14079
  • 68 Kang J.-P, Lu J.-Y, Li Y, Wang Z.-X, Mao W, Lu J. RSC Adv. 2016; 6: 39387
  • 69 Li Y, Tu D.-H, Gu Y.-J, Wang B, Wang Y.-Y, Liu Z.-T, Liu Z.-W, Lu J. Eur. J. Org. Chem. 2015; 4340
  • 70 Heitz W, Knebelkamp A. Makromol. Chem., Rapid Commun. 1991; 12: 69
  • 71 Ohashi M, Saijo H, Shibata M, Ogoshi S. Eur. J. Org. Chem. 2013; 443
  • 72 Fustero S, Simón-Fuentes A, Barrio P, Haufe G. Chem. Rev. 2015; 115: 871
  • 73 Imhof S, Randl S, Blechert S. Chem. Commun. 2001; 1692
  • 74 Macnaughtan ML, Gary JB, Gerlach DL, Johnson MJ. A, Kampf JW. Organometallics 2009; 28: 2880
  • 75 Takahira Y, Morizawa Y. J. Am. Chem. Soc. 2015; 137: 7031
  • 76 Koh MJ, Nguyen TT, Lam JK, Torker S, Hyvl J, Schrock RR, Hoveyda AH. Nature 2017; 542: 80
  • 77 Mu Y, Nguyen TT, van der Mei FW, Schrock RR, Hoveyda AH. Angew. Chem. Int. Ed. 2019; 58: 5365
  • 78 Fuchikami T, Ohishi K, Ojima I. J. Org. Chem. 1983; 48: 3803
  • 79 Ojima I, Kato K, Okabe M, Fuchikami T. J. Am. Chem. Soc. 1987; 109: 7714
  • 80 Ohtsuka Y, Kobayashi O, Yamakawa T. J. Fluorine Chem. 2014; 161: 34
  • 81 Shibahara F, Nozaki K, Hiyama T. J. Am. Chem. Soc. 2003; 125: 8555