RSS-Feed abonnieren
DOI: 10.1055/a-1538-9883
New Cleavable Spacers for Tandem Synthesis of Multiple Oligonucleotides
K.Y. acknowledges a Nagai Memorial Research Scholarship from the Pharmaceutical Society of Japan.
Abstract
In solid-phase oligonucleotide synthesis, a single oligonucleotide is generally acquired from a column loaded with a specific solid support. Herein, we have developed new cleavable spacer (CS) derivatives for tandem synthesis of multiple oligonucleotides on a single column. Four CS analogues were designed, synthesized, and inserted between two oligonucleotide sequences using an automated oligonucleotide synthesizer. The CS derivatives bearing a cyclic cis-1,2-diol exhibited efficient release of the two oligonucleotides under commonly employed basic conditions of aqueous ammonia. Among the CS analogues, it was found that CS with a robust structure can potentially be applied as a spacer molecule in the tandem synthesis of multiple oligonucleotides in a single sequence.
Key words
oligonucleotide synthesis - tandem synthesis - cleavable spacers - phosphoramidites - 1,2-diol derivativesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1538-9883.
- Supporting Information
Publikationsverlauf
Eingereicht: 31. Mai 2021
Angenommen nach Revision: 28. Juni 2021
Accepted Manuscript online:
28. Juni 2021
Artikel online veröffentlicht:
02. August 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lundin KE, Gissberg O, Smith CI. E. Hum. Gene Ther. 2015; 26: 475
- 2 Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang X.-J. Signal Transduction Targeted Ther. 2020; 5: 101
- 3 Galderisi U, Cascino A, Giordano A. J. Cell. Physiol. 1999; 181: 251
- 4 Madsen M, Gothelf KV. Chem. Rev. 2019; 119: 6384
- 5 Castro CE, Kilchherr F, Kim DN, Shiao EL, Wauer T, Wortmann P, Bathe M, Dietz H. Nat. Methods 2011; 8: 221
- 6 Ramezani H, Dietz H. Nat. Rev. Genet. 2020; 21: 5
- 7 Glazier DA, Liao J, Roberts BL, Li X, Yang K, Stevens CM, Tang W. Bioconjugate Chem. 2020; 31: 1213
- 8 Damha MJ, Giannaris PA, Zabarylo SV. Nucleic Acids Res. 1990; 18: 3813
- 9 Matteucci MD, Caruthers MH. J. Am. Chem. Soc. 1981; 103: 3185
- 10 Hardy PM, Holland D, Scott S, Garman AJ, Newton CR, McLean MJ. Nucleic Acids Res. 1994; 22: 2998
- 11 Pon RT, Yu S, Sanghvi YS. J. Org. Chem. 2002; 67: 856
- 12 Pon RT, Yu S. Nucleic Acids Res. 2005; 33: 1940
- 13 Azhayev AV, Antopolsky ML. Tetrahedron 2001; 57: 4977
- 14 Yagodkin A, Azhayev A. ARKIVOC 2009; (iii): 187
- 15 Gough GR, Brunden MJ, Gilham PT. Tetrahedron Lett. 1983; 24: 5321
- 16 Nelson PS, Muthini S, Vierra M, Acosta L, Smith TH. BioTechniques 1997; 22: 752
- 17 Ravikumar VT, Kumar RK, Olsen P, Moore MN, Carty RL, Andrade M, Gorman D, Zhu X, Cedillo I, Wang Z, Mendez L, Scozzari AN, Aguirre G, Somanathan R, Berneès S. Org. Process Res. Dev. 2008; 12: 399
- 18 Ravikumar VT, Kumar RK, Zhu X. Synth. Commun. 2006; 36: 2269
-
19 CCDC 2072305 (16) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures
- 20 Yagodkin A, Löschcke K, Weisell J, Azhayev A. Tetrahedron 2010; 66: 2210