Subscribe to RSS
DOI: 10.1055/a-1545-6874
Recent Advance in Iminyl Radical Triggered C–H and C–C Bond Functionalization of Oxime Esters via 1,5-HAT and β-Carbon Scission
L. Liu thanks the National Natural Science Foundation of China (21901199) and Xi’an Jiaotong University (7121192002) for financial support. L.-N. Guo thanks the National Natural Science Foundation of China (21971201) for financial support.

Abstract
The direct functionalization of C(sp3)–H and C(sp3)–C(sp3) bonds is considered as one of the most valuable synthetic strategies because of its high efficiency and step-economy for the rapid assembly of complex molecules. However, the relatively high bond disassociation energies (BDEs) and similar chemical environment lead to large obstacles in terms of low reactivity and selectivity. Using a radical-based strategy has proved to be an efficient approach to overcome these difficulties via a hydrogen atom transfer (HAT) process for selective C(sp3)–H functionalization and β-carbon scission for C(sp3)–C(sp3) bond derivatization. Oxime esters have emerged as outstanding precursors of iminyl radicals for versatile chemical transformations. This short review summaries the recent advances in site-specific C(sp3)–H functionalization and C(sp3)–C(sp3) bond cleavage starting from oxime esters by our group and pioneering work by others, mainly focusing on the reaction design as well as the reaction mechanism.
1 Introduction
2 C(sp3)–H Bond Functionalization via 1,5-HAT of Acyclic Oxime Esters
2.1 1,5-HAT/Cyclization
2.2 1,5-HAT/C–C or C–Heteroatom Bond Formation
3 C(sp3)–C(sp3) Bond Functionalization via β-Carbon Scission of Cyclic Oxime Esters
3.1 β-Carbon Scission/C–C or C–Heteroatom Bond Formation
3.2 β-Carbon Scission/Cyclization
4 Conclusion and Outlook
Key words
iminyl radical - oxime esters - 1,5-hydrogen atom transfer - β-carbon scission - C(sp3)–H functionalization - C(sp3)–C(sp3) functionalizationPublication History
Received: 26 May 2021
Accepted after revision: 07 July 2021
Accepted Manuscript online:
07 July 2021
Article published online:
19 August 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Chen X, Engle KM, Wang DH, Yu J. Angew. Chem. Int. Ed. 2009; 48: 5094
- 1b Lyons TW, Sanford M. Chem. Rev. 2010; 110: 1147
- 1c Newhous T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
- 1d Mishira AA, Subhedar D, Bhanage BM. Chem. Rec. 2019; 19: 1829
- 1e Stokerl S, Mencheno OG. Org. Chem. Front. 2016; 3: 277
- 1f Wang L, Xiao J. Org. Chem. Front. 2016; 3: 635
- 1g Rej S, Chatani N. Angew. Chem. Int. Ed. 2019; 58: 8304
- 1h He C, Whitehurst WG, Gaunt M. Chem 2019; 5: 1031
- 1i Liu Y, You T, Wang H, Tang Z, Zhou C, Che C. Chem. Soc. Rev. 2020; 49: 5310
- 2a Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
- 2b Liang Y, Jiao N. Acc. Chem. Res. 2017; 50: 1640
- 2c Zheng Q, Jiao N. Chem. Soc. Rev. 2016; 45: 4590
- 2d Murakami M, Ishida N. Chem. Rev. 2021; 121: 264
- 2e McDonald TR, Mills LR, West MS, Rousseaux SA. Chem. Rev. 2021; 121: 3
- 2f Shi S.-H, Liang Y, Jiao N. Chem. Rev. 2021; 121: 485
- 2g Xiao W.-J, Wu J. Chin. Chem. Lett. 2020; 31: 3083
- 2h Wu X, Zhu C. Acc. Chem. Res. 2020; 53: 1620
- 2i Vicente R. Chem. Rev. 2021; 121: 162
- 2j Morcillo SP. Angew. Chem. Int. Ed. 2019; 58: 14044
- 2k Wu X, Zhu C. Chem. Rec. 2018; 18: 587
- 2l Wu X, Wu S, Zhu C. Tetrahedron Lett. 2018; 59: 1328
- 3a Gao P, Gu Y, Duan X.-H. Synthesis 2017; 49: 3407
- 3b Yu J, Pan C. Chem. Commun. 2016; 52: 2220
- 3c Patel OP, Nandwanna NK, Legosetja J, Das BC, Bhaskar C, Kumar A. Adv. Synth. Catal. 2020; 362: 4226
- 3d Sivaguru P, Wang Z, Zanoni G, Bi X. Chem. Soc. Rev. 2019; 48: 2615
- 3e Sarkar S, Cheung KP. S, Gevorgyen V. Chem. Sci. 2020; 11: 12974
- 3f Chen W, Wei W. Asian J. Org. Chem. 2018; 7: 1429
- 3g Jia K, Chen Y. Chem. Commun. 2018; 54: 6105
- 3h Li W, Xu W, Xie J, Yu S, Zhu C. Chem. Soc. Rev. 2018; 47: 654
- 3i Lu Q, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 49
- 4a Xu P, Li W, Zhu C. Acc. Chem. Res. 2018; 51: 484
- 4b Zhang T, Wu Y, Wang N, Xing Y. Synthesis 2019; 51: 4531
- 4c Wang N, Zhang L, Wu Y, Xing Y. Synlett 2021; 32: 23
- 4d Yu X.-Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2021; 121: 506
- 4e Yu X, Zhao Q, Chen J, Xiao W.-J, Chen J. Acc. Chem. Res. 2020; 53: 1066
- 4f Jiang H, Studer A. CCS Chem. 2019; 1: 38
- 4g Goddard J, Olliver C, Fensterbank L. Acc. Chem. Res. 2016; 49: 1924
- 4h Tang S, Liu K, Liu C, Lei A. Chem. Soc. Rev. 2015; 44: 1070
- 4i Wu X, Zhu C. Chem. Commun. 2019; 55: 9747
- 4j Wu X, Zhu C. CCS Chem. 2020; 2: 813
- 5 Smith MB, March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 6th ed. John Wiley & Sons; Hoboken: 2007
- 6 Hudson RF, Lawson AJ, Lucken EA. C. J. Chem. Soc. D 1971; 807
- 7a Ginns IS, Symons MC. R. J. Chem. Soc., Dalton Trans. 1972; 185
- 7b Symons MC. R. Tetrahedron 1973; 29: 1555
- 8 Griller D, Mendenhall GD, Hoof WV, Ingold KU. J. Am. Chem. Soc. 1974; 96: 6068
- 9a Wood DE, Lloyd RV, Pratt DW. J. Am. Chem. Soc. 1970; 92: 4115
- 9b Symons MC. R. Tetrahedron 1973; 29: 615
- 10a Forrester AR, Gill M, Sadd JS, Thomson RH. J. Chem. Soc., Chem. Commun. 1975; 291
- 10b Forrester AR, Gill M, Thomson RH. J. Chem. Soc., Chem. Commun. 1976; 677
- 10c Forrester AR, Gill M, Meyer CJ, Sadd JS, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 606
- 10d Forrester AR, Gill M, Sadd JS, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 612
- 10e Forrester AR, Gill M, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 616
- 10f Forrester AR, Gill M, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 621
- 10g Forrester AR, Gill M, Napier RJ, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 632
- 10h Forrester AR, Gill M, Meyer CJ, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 637
- 10i Forrester AR, Napier RJ, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 984
- 11 Biovin J, Fouquet E, Schiano A.-M, Zard SZ. Tetrahedron 1994; 50: 1769
- 12a Boivin J, Fouquet E, Zard SZ. J. Am. Chem. Soc. 1991; 113: 1055
- 12b Boivin J, Fouquet E, Zard SZ. Tetrahedron Lett. 1991; 32: 4299
- 12c Boivin J, Schiano A.-M, Zard SZ. Tetrahedron Lett. 1994; 35: 249
- 12d Boivin J, Schiano A.-M, Zard SZ. Tetrahedron Lett. 1992; 33: 7849
- 13a Narasaka K, Kusama H, Yamashita Y, Sato H. Chem. Lett. 1993; 489
- 13b Kusama H, Yamashita Y, Narasaka K. Chem. Lett. 1995; 5
- 13c Uchiyama K, Hayashi Y, Narasaka K. Chem. Lett. 1998; 1261
- 13d Tsutsui H, Narasaka K. Chem. Lett. 2001; 526
- 13e Narasaka K, Kitamura M. Eur. J. Org. Chem. 2005; 4505
- 14a Wappes WA, Nakafuku KM, Nagib DA. J. Am. Chem. Soc. 2017; 139: 10204
- 14b Mou X, Chen X, Chen G, He G. Chem. Commun. 2018; 54: 515
- 14c Xia P, Ye Z, Hu Y, Song D, Xiang H, Chen X, Yang H. Org. Lett. 2019; 21: 2658
- 14d Wang P, He B, Cheng Y, Chen J, Xiao W.-J. Org. Lett. 2019; 21: 6924
- 14e Jiang H, Studer A. Angew. Chem. Int. Ed. 2017; 56: 12273
- 14f Li X, Yan X, Wang Z, He X, Dai Y, Yan X, Zhao D, Xu X. J. Org. Chem. 2020; 85: 2504
- 14g Xiong P, Xu H. Acc. Chem. Res. 2019; 52: 3339
- 15a Jiang H, An X, Tong K, Zheng T, Zhang Y, Yu S. Angew. Chem. Int. Ed. 2015; 54: 4055
- 15b Davies J, Morcill SP, Douglas JJ, Leonori D. Chem. Eur. J. 2018; 24: 12154
- 15c Yu X, Wang P, Yan D, Li B, Chen J, Xiao W.-J. Adv. Synth. Catal. 2018; 360: 3601
- 16a Kitamura M, Narasaka K. Chem. Rec. 2002; 2: 268
- 16b Vessally E, Saeidian HA, Edjlali L, Bekhradnis A. Curr. Org. Chem. 2017; 21: 249
- 17a Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
- 17b Barton DH. R, Beaton JM. J. Am. Chem. Soc. 1960; 82: 2641
- 17c Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1961; 83: 4076
- 18a Lee W, Jeon HJ, Jung KH, Kim D, Seo S, Chang S. Chem 2021; 7: 495
- 18b Liu M, Shu W. ACS Catal. 2020; 10: 12960
- 18c Roos CB, Demaerel J, Graff DE, Knowles RR. J. Am. Chem. Soc. 2020; 142: 5974
- 18d Shatskiy A, Liu J, Kaerkaes KD. Chem 2021; 7: 283
- 18e Kumar G, Pradhan S, Chatterjee I. Chem. Asian J. 2020; 15: 651
- 19a Forrester AR, Napier RJ, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1981; 984
- 19b Li Z, Torres-Ochoa RO, Wang Q, Zhu J. Nat. Commun. 2020; 11: 403
- 19c Dauncey EM, Morcillo SP, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2019; 57: 744
- 20 Chen H, Chiba S. Org. Biomol. Chem. 2014; 12: 42
- 21 Li J, Zhang P, Jiang M, Yang H, Zhao Y, Fu H. Org. Lett. 2017; 19: 1994
- 22 Li Y, Mao R, Wu J. Org. Lett. 2017; 19: 4472
- 23 Shu W, Nevado C. Angew. Chem. Int. Ed. 2017; 56: 1881
- 24 Dauncey EM, Morcillo SP, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2018; 57: 1881
- 25 Jiang H, Studer A. Angew. Chem. Int. Ed. 2018; 57: 1692
- 26 Zhang Y, Yin Z, Wu X.-F. Adv. Synth. Catal. 2019; 361: 3223
- 27 Yin Z, Zhang Z, Zhang Y, Dixneuf PH, Wu X.-F. Chem. Commun. 2019; 55: 4655
- 28 Shen X, Zhao J.-J, Yu S. Org. Lett. 2018; 20: 5523
- 29 Chen L, Guo L.-N, Ma Z, Gu Y, Zhang J, Duan X.-H. J. Org. Chem. 2019; 84: 6475
- 30 Ma Z, Guo L.-N, Gu Y, Chen L, Duan X.-H. Adv. Synth. Catal. 2018; 360: 4341
- 31 Gu Y, Duan X.-H, Chen L, Ma Z, Gao P, Guo L.-N. Org. Lett. 2019; 21: 917
- 32 Torres-Ochoa R, Leclair A, Wang Q, Zhu J. Chem. Eur. J. 2019; 25: 9477
- 33a Krylov IB, Segida OO, Budnikov AS, Terent’ev AO. Adv. Synth. Catal. 2021; 363: 2502
- 33b Xiao T, Huang H, Anand D, Zhou L. Synthesis 2020; 52: 1585
- 33c Jackman MM, Cai Y, Castle SL. Synthesis 2017; 49: 1785
- 33d Xiao F, Guo Y, Zeng Y. Adv. Synth. Catal. 2021; 363: 120
- 33e Huang H, Cai J, Deng G. Org. Biomol. Chem. 2016; 14: 1519
- 33f Huang H, Ji X, Wu W, Jiang H. Chem. Soc. Rev. 2015; 44: 1155
- 34a Kwiatkowski MR, Alexanian EJ. Acc. Chem. Res. 2019; 52: 1134
- 34b Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
- 34c Wu X, Zhu C. Chin. J. Chem. 2019; 37: 171
- 34d Salamone M, Bietti M. Synlett 2014; 25: 1803
- 34e Wang B, Perea MA, Sarpong R. Angew. Chem. Int. Ed. 2020; 59: 18898
- 34f Wang J, Blaszczyk A, Li X, Tang W. Chem. Rev. 2021; 121: 110
- 34g Lutz MD. R, Morandi B. Chem. Rev. 2021; 121: 300
- 34h Lu H, Yu T, Xu P, Wei H. Chem. Rev. 2021; 121: 365
- 35a Nishimura T, Uemura S. J. Am. Chem. Soc. 2000; 122: 12049
- 35b Nishimura T, Nishiguchi Y, Maeda Y, Uemura S. J. Org. Chem. 2004; 69: 5342
- 36 Nishimura T, Yoshinaka T, Nishiguchi Y, Maeda Y, Uemura S. Org. Lett. 2005; 7: 2425
- 37 Yang H.-B, Selander N. Chem. Eur. J. 2017; 23: 1779
- 38 Gu Y.-R, Duan X.-H, Yang L, Guo L.-N. Org. Lett. 2017; 19: 5908
- 39 Yang L, Gao P, Duan X.-H, Gu Y.-R, Guo L.-N. Org. Lett. 2018; 20: 1034
- 40 Zhao J.-F, Gao P, Duan X.-H, Guo L.-N. Adv. Synth. Catal. 2018; 360: 1775
- 41 Zhao J.-F, Duan X.-H, Gu Y.-R, Gao P, Guo L.-N. Org. Lett. 2018; 20: 4614
- 42 Min Q.-Q, Li N, Chen G.-L, Liu F. Org. Chem. Front. 2019; 6: 1200
- 43 Tian L, Gao S, Wang R, Li Y, Tang C, Shi L, Fu J. Chem. Commun. 2019; 55: 5347
- 44 Zhao B, Wang M, Shi Z. J. Org. Chem. 2019; 84: 10145
- 45 Yang L, Zhang J.-Y, Duan X.-H, Gao P, Jiao J, Guo L.-N. J. Org. Chem. 2019; 84: 8615
- 46a Mo F, Jiang Y, Qiu D, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2010; 49: 1846
- 46b Mfuh AM, Doyle JD, Chhetri B, Arman HD, Larionove OV. J. Am. Chem. Soc. 2016; 138: 2985
- 46c Cheng Y, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed. 2018; 57: 16832
- 46d Cuenca AB, Shishido R, Ito H, Fernandez E. Chem. Soc. Rev. 2017; 46: 415
- 47 Zhang J.-J, Duan X.-H, Wu Y, Yang J.-C, Guo L.-N. Chem. Sci. 2019; 10: 161
- 48a Sibi MP, Manyem S, Zimmerman J. Chem. Rev. 2003; 103: 3263
- 48b Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
- 48c Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
- 48d Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
- 49a Chen J, Yu X, Xiao W.-J. Synthesis 2015; 47: 604
- 49b Song R, Liu Y, Xie Y, Li J. Synthesis 2015; 47: 1195
- 49c Li C, Yang S. Org. Biomol. Chem. 2016; 14: 4365
- 50 Wu J, Zhang J.-J, Gao P, Xu S.-I, Guo L.-N. J. Org. Chem. 2018; 83: 1046
- 51 Zhang J.-J, Duan X.-H, Yang J.-C, Guo L.-N. J. Org. Chem. 2018; 83: 4239
- 52 Tang Y.-Q, Yang J.-C, Wang L, Fan M, Guo L.-N. Org. Lett. 2019; 21: 5178
For selected reviews on C(sp3)–H bond functionalization, see:
For selected reviews on C–C bond functionalization, see:
For selected examples, see:
For selected examples, see:
For selected examples, see refs 2g, 13e, and:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see: