Synthesis 2021; 53(23): 4477-4483
DOI: 10.1055/a-1545-7706
paper

Synthesis of Dibenzo[a,e]cyclooctene-5,11(6H,12H)-diones via the Elusive Benzocyclobutenone Anion

Yingchao Huang
a   College of Chemistry and Life, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, P. R. of China
,
Jun Chen
b   Department of Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. of China
,
Yu Liu
a   College of Chemistry and Life, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, P. R. of China
,
Ping Lu
b   Department of Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (Nos. 22071028, 21772024, and 21921003).


Abstract

We reported here a facile synthesis of dibenzo[a,e]cyclo­octene-5,11(6H,12H)-diones via dimerization of benzocyclobutenones in the presence of simple base via the elusive benzocyclobutenone anion­. The temperature effect played a crucial role in the dimerization reaction­. Further synthesis of 5,11-disubstituted dibenzo[a,e]cyclo­octenes (dibenzo[a,e][8]annulenes) from dibenzo[a,e]cyclooctene-5,11(6H,12H)-diones was also explored.

Supporting Information



Publication History

Received: 29 March 2021

Accepted after revision: 07 July 2021

Accepted Manuscript online:
07 July 2021

Article published online:
25 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For a review, see:
    • 3a Chen P.-H, Billett BA, Tsukamoto T, Dong G. ACS Catal. 2017; 7: 1340

    • For recent examples, see:
    • 3b Zhang J, Wang X, Xu T. Nat. Commun. 2021; 12: 3022
    • 3c Xue Y, Dong G. J. Am. Chem. Soc. 2021; 143: 8272
    • 3d Hou S.-H, Prichina AY, Dong G. Angew. Chem. Int. Ed. 2021; 60: 13057
    • 4a Cava MP, Muth K. J. Am. Chem. Soc. 1960; 82: 652
    • 4b Gokhale A, Schiess P. Helv. Chim. Acta 1998; 81: 251

      For a recent review, see:
    • 5a Cano R, Zakarian A, McGlacken GP. Angew. Chem. Int. Ed. 2011; 50: 7740
    • 5b Braun M. In Modern Enolate Chemistry: From Preparation to Applications in Asymmetric Synthesis. Wiley-VCH; Weinheim: 2016
  • 6 Bertelli DJ, Crews P. J. Am. Chem. Soc. 1968; 90: 3889
  • 7 Matsumoto T, Hamura T, Kuriyama Y, Suzuki K. Tetrahedron Lett. 1997; 38: 8985
  • 8 Chang S, Holmes M, Mowat J, Meanwell M, Britton R. Angew. Chem. Int. Ed. 2017; 56: 748
  • 9 Mehta G, Venkateswaran RV. Tetrahedron 2000; 56: 1399
  • 10 CCDC 2073768 (4a) and 2073769 (6a) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures
    • 11a Wang L.-N, Yu Z.-X. Chin. J. Org. Chem. 2020; 40: 3536
    • 11b Yu Z.-X, Wang Y, Wang Y. Chem. Asian J. 2010; 5: 1072
    • 11c Hu Y.-J, Li L.-X, Han JC, Min L, Li C.-C. Chem. Rev. 2020; 120: 5910
    • 12a Fu X.-F, Xiang Y, Yu Z.-X. Chem. Eur. J. 2015; 21: 4242
    • 12b Juliá-Hernández F, Ziadi A, Nishimura A, Martin R. Angew. Chem. Int. Ed. 2015; 54: 9537
  • 13 As mentioned in ref. 6, the hydrate is the main product in this reaction.
    • 14a Melcher M.-C, Ivšić T, Olagnon C, Tenten C, Lützen A, Strand D. Chem. Eur. J. 2018; 24: 2344
    • 14b Wender PA, Lesser AB, Sirois LE. Angew. Chem. Int. Ed. 2012; 51: 2736
    • 14c Kina A, Ueyama K, Hayashi T. Org. Lett. 2005; 7: 5889
    • 14d Läng F, Breher F, Stein D, Grützmacher H. Organometallics 2005; 24: 2997