Subscribe to RSS
DOI: 10.1055/a-1545-7927
Update on MicroRNA-based Treatment Strategies
Übersicht zu mikroRNA-basierten BehandlungsstrategienAbstract
The family of RNAs comprises several members, protein coding mRNAs and a larger group of non-coding RNAs, which include small, approximately 21-25 nucleotides long microRNAs (miRNAs). In addition to an evolving diagnostic use of RNAs, RNA-based drugs are emerging very rapidly in medicine, which is not only -but currently very prominently visible- due to the impressive success of the first-in-class Covid-19 vaccines such as Comirnaty and Moderna (marketed by the companies Biontech/Pfizer and Moderna, respectively). Although administration of RNA-based drugs comes along with several technical obstacles including delivery approaches, the technology is experiencing a breakthrough and technical and conceptual hurdles that may still remain are very likely to be overcome within the near future. It is therefore highly likely that RNA-based pharmacotherapies may revolutionize medicine by improving vaccination concepts but also by providing novel drugs to treat many other conditions like cancer, metabolic- and degenerative diseases and beyond. It is fascinating to witness the rise of such milestones in medicine and is tempting to elaborate which additional accomplishments can be made using this technology towards personalized medicine comprising diagnostic and therapeutic aspects as well as individual drug design.
Although the most recent success with mRNA-based and therefore protein coding vaccines currently takes center stage in media and people’s life, other types of RNAs that are less prominent to the public, like non-coding miRNAs, also develop very successfully towards diagnostic and therapeutic purposes. While the diagnostic use of miRNAs was reviewed in another article in this issue (see article from Hackl et al., this issue), this brief review will provide an update on the emerging therapeutic implications of miRNAs. Despite the fact that no miRNA-based drug has yet reached clinical approval, several compounds are in pre-clinical and clinical development for the treatment of various diseases and great progress has been made during the recent years, which also facilitated the establishment of several innovative biotech companies.
Several obstacles associated with this novel approach including off-target effects, tissue specificity and delivery systems exist. However, important improvements have already been made and will continue to be made. It can therefore be assumed that treatments using this class of RNA will also further progress and stimulate additional stakeholders to enter the field to develop novel drug candidates as first-in-class medicinal products to address highly unmet clinical needs. This technology is still at its infancy given that miRNAs were uncovered just about 20 years ago but the conditions are promising for the development of next generation miRNA-based drugs.
Zusammenfassung
Die Familie der RNAs umfasst mehrere Mitglieder, Protein-kodierende mRNAs und eine Gruppe von nicht-kodierenden RNAs, zu denen microRNAs (miRNAs) gehören. Neben einer sich entwickelnden diagnostischen Verwendung von RNAs etablieren sich auf RNA-basierte Medikamente nun sehr schnell, angesichts der erstaunlichen Erfolge mit Covid-19-Impfstoffen wie z. B. Comirnaty und Moderna (vermarktet von Biontech/Pfizer bzw. Moderna). Obwohl die Verabreichung von RNA-basierten Arzneimitteln mit mehreren technischen Hürden einhergehen kann wie z. B. der Wirkstoffverbringung, erlebt die Technologie einen Durchbruch und viele technische und konzeptionelle Hürden, die derzeit noch bestehen, werden sehr wahrscheinlich in naher Zukunft überwunden werden. Es ist daher zu erwarten, dass RNA-basierte Pharmakotherapien die Humanmedizin revolutionieren werden, indem sie Impfkonzepte verbessern bzw. zur Behandlung vieler anderer Krankheiten wie Krebs, Stoffwechsel- und degenerative Erkrankungen und darüber hinaus eingesetzt werden. Es fasziniert die Entwicklung solcher Meilensteine in der Medizin zu verfolgen und zu bedenken, welche weiteren Möglichkeiten sich mit dieser Technologie hinsichtlich personalisierter Medizin mit diagnostischen und therapeutischen Aspekten sowie individuellem Wirkstoffdesign ergeben könnten.
Obwohl die jüngsten Erfolge von mRNA-basierten und damit proteinkodierenden Impfstoffen derzeit in den Medien und im alltäglichen Leben vieler Menschen im Mittelpunkt stehen, entwickeln sich auch andere, in der Öffentlichkeit weniger bekannte, RNA-Typen wie z. B. nicht-kodierende miRNAs sehr erfolgreich in Richtung diagnostische und therapeutische Anwendungen. Während die diagnostische Verwendung von miRNAs in einem anderen Artikel in dieser Ausgabe (siehe Artikel von Hackl et al., diese Ausgabe) thematisiert wird, soll dieser Artikel eine Übersicht über die aufkommenden therapeutischen Möglichkeiten von miRNAs geben. Obwohl noch kein auf miRNA-basiertes Medikament die klinische Zulassung erreicht hat, befinden sich mehrere Wirkstoffe zur Behandlung unterschiedlicher Krankheiten in der präklinischen und klinischen Entwicklung. In den letzten Jahren wurden zudem große Fortschritte erzielt, die auch die Etablierung mehrerer innovativer Biotech Unternehmen begünstigten.
Trotz verschiedener Hindernisse, die mit diesem neuen Ansatz verbunden sind (z. B. off-Target-Effekte, Gewebespezifität und Wirkstoffverbringung), wurden bereits wichtige Verbesserungen erzielt und werden wahrscheinlich auch weiterhin erreicht. Es kann daher davon ausgegangen werden, dass auch Therapieentwicklungen mit dieser RNA Klasse weitere Fortschritte erzielen werden. Dies wird weitere Wissenschaftler und Firmen dazu anregen in dies Feld einzusteigen, um neuartige Wirkstoffkandidaten als First-in-Class-Medikamente für verschiedene Indikationen zu entwickeln. Diese Technologie steckt noch in den Kinderschuhen, da miRNAs erst vor etwa 20 Jahren entdeckt wurden. Dennoch sind die Erfolgsaussichten für die Entwicklung von auf miRNA-basierten Medikamenten sehr vielversprechend.
Publication History
Article published online:
17 September 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16: 203-222 Available from: https://pubmed.ncbi.nlm.nih.gov/28209991/
- 2 Di Martino MT, Riillo C, Scionti F, Grillone K, Polerà N, Caracciolo D. et al miRNAs and lncRNAs as Novel Therapeutic Targets to Improve Cancer Immunotherapy. Cancers (Basel) 2021; 13: 1587 Available from: http://www.ncbi.nlm.nih.gov/pubmed/33808190
- 3 Taipaleenmäki H. Regulation of Bone Metabolism by microRNAs. Curr Osteoporos Rep 2018; 16: 1-12 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29335833
- 4 Roberts TC, Wood MJA. Therapeutic targeting of non-coding RNAs. Essays Biochem 2013; 54: 127-145 Available from: https://pubmed.ncbi.nlm.nih.gov/23829532/
- 5 Neumeier J, Meister G. siRNA Specificity: RNAi Mechanisms and Strategies to Reduce Off-Target Effects. Front Plant Sci 2020; 11: 526455 Available from: http://www.ncbi.nlm.nih.gov/pubmed/33584737
- 6 Adachi H, Hengesbach M, Yu Y-T, Morais P. From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021; 9: 550 Available from: http://www.ncbi.nlm.nih.gov/pubmed/34068948
- 7 Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol 2018; 15: 338-352 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29570036
- 8 El Sayed SR, Cristante J, Guyon L, Denis J. et al MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers (Basel) 2021; 13: 2680 Available from: https://pubmed.ncbi.nlm.nih.gov/34072348/
- 9 Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI, Cooke JP. The Limitless Future of RNA Therapeutics. Front Bioeng Biotechnol 2021; 9: 628137 Available from: http://www.ncbi.nlm.nih.gov/pubmed/33816449
- 10 Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 2021; 1-23 Available from: https://pubmed.ncbi.nlm.nih.gov/34145432/
- 11 Alshaer W, Zureigat H, Al Karaki A, Al-Kadash A. et al siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol 2021; 905: 174178 Available from: https://pubmed.ncbi.nlm.nih.gov/34044011/
- 12 Swerdlow DI, Rider DA, Yavari A, Lindholm MW, Campion GV, Nissen SE. Treatment and prevention of lipoprotein(a)-mediated cardiovascular disease: the emerging potential of RNA interference therapeutics. Cardiovasc Res 2021; cvab100 Available from: https://pubmed.ncbi.nlm.nih.gov/33769464/
- 13 Mahmoodpoor A, Sanaie S, Samadi P, Yousefi M, Nader ND. SARS-CoV-2: Unique Challenges of the Virus and Vaccines. Immunol Invest 2021; 1-8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/34109900
- 14 Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS Cent Sci 2021; 7: 512-533 Available from: http://www.ncbi.nlm.nih.gov/pubmed/34056083
- 15 Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 2003; 67: 657-685 Available from: http://www.ncbi.nlm.nih.gov/pubmed/14665679
- 16 Raue R, Frank A-C, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22: 2210 Available from: http://www.ncbi.nlm.nih.gov/pubmed/33672261
- 17 Schell SL, Rahman ZSM. miRNA-Mediated Control of B Cell Responses in Immunity and SLE. Front Immunol 2021; 12: 683710 Available from: http://www.ncbi.nlm.nih.gov/pubmed/34079558
- 18 Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol 2013; 31: 577
- 19 Adams BD, Parsons C, Slack FJ. The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin Ther Targets 2016; 20: 737-753 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26652031
- 20 Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V. et al Mir-34: a new weapon against cancer?. Mol Ther Nucleic Acids 2014; 3: e194 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25247240
- 21 Beg MS, Brenner AJ, Sachdev J, Borad M, Kang Y-K, Stoudemire J. et al Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 2017; 35: 180-188 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27917453
- 22 Hong DS, Kang Y-K, Borad M, Sachdev J, Ejadi S, Lim HY. et al Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer 2020; 122: 1630-1637 Available from: http://www.ncbi.nlm.nih.gov/pubmed/32238921
- 23 Li WJ, Wang Y, Liu R, Kasinski AL, Shen H, Slack FJ. et al MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Front cell Dev Biol 2021; 9: 640587 Available from: http://www.ncbi.nlm.nih.gov/pubmed/33763422
- 24 Seto AG, Beatty X, Lynch JM, Hermreck M, Tetzlaff M, Duvic M. et al Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol 2018; 183: 428-444 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30125933
- 25 Anastasiadou E, Seto AG, Beatty X, Hermreck M, Gilles M-E, Stroopinsky D. et al Cobomarsen, an Oligonucleotide Inhibitor of miR-155, Slows DLBCL Tumor Cell Growth In Vitro and In Vivo. Clin Cancer Res 2021; 27: 1139-1149 Available from: http://www.ncbi.nlm.nih.gov/pubmed/33208342
- 26 de Gooijer CJ, Baas P, Burgers JA. Current chemotherapy strategies in malignant pleural mesothelioma. Transl lung cancer Res 2018; 7: 574-583 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30450296
- 27 Reid G, Pel ME, Kirschner MB, Cheng YY, Mugridge N, Weiss J. et al Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol Off J Eur Soc Med Oncol 2013; 24: 3128-3135 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24148817
- 28 van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S. et al Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 2017; 18: 1386-1396 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28870611
- 29 Reid G, Kao SC, Pavlakis N, Brahmbhatt H, MacDiarmid J, Clarke S. et al Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 2016; 8: 1079-1085 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27185582
- 30 Lindow M, Kauppinen S. Discovering the first microRNA-targeted drug. J Cell Biol 2012; 199: 407-412 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23109665
- 31 Janssen HLA, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K. et al Treatment of HCV Infection by Targeting MicroRNA. N Engl J Med 2013; 368: 1685-1694 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23534542
- 32 Ottosen S, Parsley TB, Yang L, Zeh K, van Doorn L-J, van der Veer E. et al In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob Agents Chemother 2015; 59: 599-608 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25385103
- 33 Baek J, Kang S, Min H. MicroRNA-targeting therapeutics for hepatitis C. Arch Pharm Res 2014; 37: 299-305 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24385319
- 34 van der Ree MH, de Vree JM, Stelma F, Willemse S. et al Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet (London, England) 2017; 389: 709-717 Available from: https://pubmed.ncbi.nlm.nih.gov/28087069/
- 35 Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M. et al MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011; 474: 649-653 Available from: http://www.nature.com/articles/nature10112
- 36 Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, Guire De V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 2019; 30: 114 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599191/
- 37 Gallant-Behm CL, Piper J, Lynch JM, Seto AG, Hong SJ, Mustoe TA. et al A MicroRNA-29 Mimic (Remlarsen) Represses Extracellular Matrix Expression and Fibroplasia in the Skin. J Invest Dermatol 2019; 139: 1073-1081 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30472058
- 38 Watson S, Padala SA, Bush JS. Alport Syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29262041
- 39 Gomez IG, MacKenna DA, Johnson BG, Kaimal V, Roach AM, Ren S. et al Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 2015; 125: 141-156 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25415439
- 40 Abplanalp WT, Fischer A, John D, Zeiher AM, Gosgnach W, Darville H. et al Efficiency and Target Derepression of Anti-miR-92a: Results of a First in Human Study. Nucleic Acid Ther 2020; 30: 335-345 Available from: http://www.ncbi.nlm.nih.gov/pubmed/32707001
- 41 Foinquinos A, Batkai S, Genschel C, Viereck J, Rump S, Gyöngyösi M. et al Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat Commun 2020; 11: 633 Available from: http://www.ncbi.nlm.nih.gov/pubmed/32005803
- 42 Batkai S, Genschel C, Viereck J, Rump S, Bär C, Borchert T. et al CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur Heart J 2021; 42: 192-201 Available from: http://www.ncbi.nlm.nih.gov/pubmed/33089304
- 43 Täubel J, Hauke W, Rump S, Viereck J, Batkai S, Poetzsch J. et al Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J 2021; 42: 178-188 Available from: http://www.ncbi.nlm.nih.gov/pubmed/33245749