Aktuelle Rheumatologie 2021; 46(04): 343-360
DOI: 10.1055/a-1548-8934
Übersichtsarbeit

Biomarker und Histologie bei idiopathischen inflammatorischen Myopathien

Biomarkers and Histology in Idiopathic Inflammatory Myopathies
Udo Schneider
1   Medizinische Klinik mit Schwerpunkt für Rheumatologie und Klinische Immunologie, Charité Universitatsmedizin Berlin, Berlin, Deutschland
,
Werner Stenzel
2   Institut für Neuropathologie, Charité Universitätsmedizin Berlin, Berlin, Deutschland
,
Bruno Stuhlmüller
1   Medizinische Klinik mit Schwerpunkt für Rheumatologie und Klinische Immunologie, Charité Universitatsmedizin Berlin, Berlin, Deutschland
› Institutsangaben

Zusammenfassung

Die idiopathischen inflammatorischen Myopathien (IIM) sind eine Gruppe entzündlicher Muskelerkrankungen für deren Diagnosestellung, Verlaufsbeurteilung, Prognoseabschätzung und Risikostratifizierung Biomarker eine jeweils essentielle Rolle spielen. Biomarker in diesem Kontext können sowohl „herkömmliche“ serologische Marker wie Muskelenzyme oder Autoantikörper, histologische Marker wie entitätsspezifische inflammatorische Muster, aber auch genomische und genetische Marker sein. Der vorliegende Artikel gibt einen Überblick über bewährte und innovative Marker.

Abstract

Idiopathic inflammatory myopathies (IIM) are a group of inflammatory muscle diseases in which biomarkers play an essential role in diagnosing the disease, evaluating its course and prognosis and stratifying each patient for disease-specific risks. In this context, biomarkers may be conventional serologic markers such as muscle enzymes or autoantibodies, specific inflammatory patterns in histology or genomic/genetic markers.



Publikationsverlauf

Artikel online veröffentlicht:
24. August 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Aggarwal R, Rider LG, Ruperto N. et al. 2016 American College of Rheumatology/European League Against Rheumatism Criteria for Minimal, Moderate, and Major Clinical Response in Adult Dermatomyositis and Polymyositis: An International Myositis Assessment and Clinical Studies Group/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Arthritis Rheumatol 2017; 69: 898-910
  • 2 Bassez G, Authier FJ, Lechapt-Zalcman E. et al. Inflammatory myopathy with abundant macrophages (IMAM): a condition sharing similarities with cytophagic histiocytic panniculitis and distinct from macrophagic myofasciitis. J Neuropathol Exp Neurol 2003; 62: 464-474
  • 3 Olivier PA, De Paepe B, Aronica E. et al. Idiopathic inflammatory myopathy: Interrater variability in muscle biopsy reading. Neurology 2019; 93: e889-e894
  • 4 Pestronk A. Acquired immune and inflammatory myopathies: pathologic classification. Curr Opin Rheumatol 2011; 23: 595-604
  • 5 Tanboon J, Uruha A, Stenzel W. et al. Where are we moving in the classification of idiopathic inflammatory myopathies?. Curr Opin Neurol 2020; 33: 590-603
  • 6 Troyanov Y, Targoff IN, Tremblay JL. et al. Novel classification of idiopathic inflammatory myopathies based on overlap syndrome features and autoantibodies: analysis of 100 French Canadian patients. Medicine (Baltimore) 2005; 84: 231-249
  • 7 Allenbach Y, Mammen AL, Benveniste O. et al. 224th ENMC International Workshop: Clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14-16 October 2016. Neuromuscul Disord 2018; 28: 87-99
  • 8 Mescam-Mancini L, Allenbach Y, Hervier B. et al. Anti-Jo-1 antibody-positive patients show a characteristic necrotizing perifascicular myositis. Brain 2015; 138: 2485-2492
  • 9 Benveniste O, Goebel HH, Stenzel W. Biomarkers in Inflammatory Myopathies-An Expanded Definition. Front Neurol 2019; 10: 554
  • 10 George MD, McGill NK, Baker JF. Creatine kinase in the U.S. population: Impact of demographics, comorbidities, and body composition on the normal range. Medicine (Baltimore) 2016; 95: e4344
  • 11 Gono T, Sato S, Kawaguchi Y. et al. Anti-MDA5 antibody, ferritin and IL-18 are useful for the evaluation of response to treatment in interstitial lung disease with anti-MDA5 antibody-positive dermatomyositis. Rheumatology (Oxford) 2012; 51: 1563-1570
  • 12 Wassie M, Lee MS, Sun BC. et al. Single vs Serial Measurements of Cardiac Troponin Level in the Evaluation of Patients in the Emergency Department With Suspected Acute Myocardial Infarction. JAMA Netw Open 2021; 4: e2037930
  • 13 Lilleker JB, Diederichsen ACP, Jacobsen S. et al. Using serum troponins to screen for cardiac involvement and assess disease activity in the idiopathic inflammatory myopathies. Rheumatology (Oxford) 2018; 57: 1041-1046
  • 14 Schmid J, Liesinger L, Birner-Gruenberger R. et al. Elevated Cardiac Troponin T in Patients With Skeletal Myopathies. J Am Coll Cardiol 2018; 71: 1540-1549
  • 15 Fathi M, Barbasso Helmers S, Lundberg IE. KL-6: a serological biomarker for interstitial lung disease in patients with polymyositis and dermatomyositis. J Intern Med 2012; 271: 589-597
  • 16 Betteridge Z, Tansley S, Shaddick G. et al. Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a combined European cohort of idiopathic inflammatory myopathy patients. J Autoimmun 2019; 101: 48-55
  • 17 Chan EK, Damoiseaux J, Carballo OG. et al Report of the First International Consensus on Standardized Nomenclature of Antinuclear Antibody HEp-2 Cell Patterns 2014-2015. Front Immunol 2015; 6: 412
  • 18 Pinal-Fernandez I, Casal-Dominguez M, Derfoul A. et al. Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis. Ann Rheum Dis 2020; 79: 1234-1242
  • 19 Pinal-Fernandez I, Casal-Dominguez M, Derfoul A. et al Identification of distinctive interferon gene signatures in different types of myositis. Neurology 2019; 93: e1193-e1204
  • 20 Zhu W, Streicher K, Shen N. et al Genomic signatures characterize leukocyte infiltration in myositis muscles. BMC Med Genomics 2012; 5: 53
  • 21 Tang Y, Luo X, Cui H. et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 2009; 60: 1065-1075
  • 22 Acosta-Herrera M, Kerick M, Gonzalez-Serna D. et al Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases. Ann Rheum Dis 2019; 78: 311-319
  • 23 Rothwell S, Chinoy H, Lamb JA. et al Focused HLA analysis in Caucasians with myositis identifies significant associations with autoantibody subgroups. Ann Rheum Dis 2019; 78: 996-1002
  • 24 Hoogendijk JE, Amato AA, Lecky BR. et al 119th ENMC international workshop: trial design in adult idiopathic inflammatory myopathies, with the exception of inclusion body myositis, 10-12 October 2003, Naarden, The Netherlands. Neuromuscul Disord 2004; 14: 337-345
  • 25 De Visser M, Emslie-Smith AM, Engel AG. Early ultrastructural alterations in adult dermatomyositis. Capillary abnormalities precede other structural changes in muscle. J Neurol Sci 1989; 94: 181-192
  • 26 Greenberg SA, Pinkus JL, Pinkus GS. et al Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol 2005; 57: 664-678
  • 27 Liao AP, Salajegheh M, Nazareno R. et al Interferon beta is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann Rheum Dis 2011; 70: 831-836
  • 28 Greenberg SA, Higgs BW, Morehouse C. et al Relationship between disease activity and type 1 interferon- and other cytokine-inducible gene expression in blood in dermatomyositis and polymyositis. Genes Immun 2012; 13: 207-213
  • 29 Higgs BW, Liu Z, White B. et al Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis 2011; 70: 2029-2036
  • 30 Melki I, Devilliers H, Gitiaux C. et al Anti-MDA5 juvenile idiopathic inflammatory myopathy: a specific subgroup defined by differentially enhanced interferon-alpha signalling. Rheumatology (Oxford) 2020; 59: 1927-1937
  • 31 Pinal-Fernandez I, Casal-Dominguez M, Milisenda JC. et al Response to: ‘Correspondence on ‘Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis’” by Takanashi et al. Ann Rheum Dis 2021;
  • 32 Suarez-Calvet X, Gallardo E, Nogales-Gadea G. et al Altered RIG-I/DDX58-mediated innate immunity in dermatomyositis. J Pathol 2014; 233: 258-268
  • 33 Takanashi S. Correspondence on ‘Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis’. Ann Rheum Dis 2020;
  • 34 Greenberg SA. Type 1 interferons and myositis. Arthritis Res Ther 2010; 12: S4
  • 35 Radke J, Koll R, Preusse C. et al Architectural B-cell organization in skeletal muscle identifies subtypes of dermatomyositis. Neurology(R) neuroimmunology & neuroinflammation 2018; 5: e451
  • 36 Radke J, Koll R, Preuße C. et al Architectural B-cell organization in skeletal muscle identifies subtypes of dermatomyositis. 2018; 5: e451 Neurology – Neuroimmunology Neuroinflammation
  • 37 Uruha A, Nishikawa A, Tsuburaya RS. et al Sarcoplasmic MxA expression: A valuable marker of dermatomyositis. Neurology 2017; 88: 493-500
  • 38 Biesen R, Demir C, Barkhudarova F. et al Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum 2008; 58: 1136-1145
  • 39 Lim J, Raaphorst J, van der Kooi AJ. Comment on “Systematic retrospective study on 64 patients anti-Mi2 dermatomyositis: A classic skin rash with a necrotizing myositis and high risk of malignancy”. J Am Acad Dermatol 2020; 83: e459-e460
  • 40 Monseau G, Landon-Cardinal O, Stenzel W. et al Systematic retrospective study of 64 patients with anti-Mi2 dermatomyositis: A classic skin rash with a necrotizing myositis and high risk of malignancy. J Am Acad Dermatol 2020; 83: 1759-1763
  • 41 Allenbach Y, Benveniste O, Goebel HH. et al Integrated classification of inflammatory myopathies. Neuropathol Appl Neurobiol 2017; 43: 62-81
  • 42 Ladislau L, Suarez-Calvet X, Toquet S. et al JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis. Brain 2018; 141: 1609-1621
  • 43 Dani L, Holmqvist M, Martinez MA. et al Anti-transcriptional intermediary factor 1 gamma antibodies in cancer-associated myositis: a longitudinal study. Clin Exp Rheumatol 2020; 38: 67-73
  • 44 Hida A, Yamashita T, Hosono Y. et al Anti-TIF1-gamma antibody and cancer-associated myositis: A clinicohistopathologic study. Neurology 2016; 87: 299-308
  • 45 Fiorentino DF, Chung LS, Christopher-Stine L. et al Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1gamma. Arthritis Rheum 2013; 65: 2954-2962
  • 46 Inoue M, Tanboon J, Hirakawa S. et al Association of Dermatomyositis Sine Dermatitis With Anti-Nuclear Matrix Protein 2 Autoantibodies. JAMA Neurol 2020; 77: 872-877
  • 47 Pinal-Fernandez I, Casciola-Rosen LA, Christopher-Stine L. et al The Prevalence of Individual Histopathologic Features Varies according to Autoantibody Status in Muscle Biopsies from Patients with Dermatomyositis. J Rheumatol 2015; 42: 1448-1454
  • 48 Allenbach Y, Leroux G, Suarez-Calvet X. et al Dermatomyositis With or Without Anti-Melanoma Differentiation-Associated Gene 5 Antibodies: Common Interferon Signature but Distinct NOS2 Expression. Am J Pathol 2016; 186: 691-700
  • 49 Betteridge ZE, Gunawardena H, Chinoy H. et al Clinical and human leucocyte antigen class II haplotype associations of autoantibodies to small ubiquitin-like modifier enzyme, a dermatomyositis-specific autoantigen target, in UK Caucasian adult-onset myositis. Ann Rheum Dis 2009; 68: 1621-1625
  • 50 Mammen AL, Allenbach Y, Stenzel W. et al 239th ENMC International Workshop: Classification of dermatomyositis, Amsterdam, the Netherlands, 14-16 December 2018. Neuromuscul Disord 2020; 30: 70-92
  • 51 Allenbach Y, Benveniste O, Stenzel W. et al Immune-mediated necrotizing myopathy: clinical features and pathogenesis. Nat Rev Rheumatol 2020; 16: 689-701
  • 52 Mohassel P, Landon-Cardinal O, Foley AR. et al Anti-HMGCR myopathy may resemble limb-girdle muscular dystrophy. Neurology(R) neuroimmunology & neuroinflammation 2019; 6: e523
  • 53 Pinal-Fernandez I, Mammen AL. Spectrum of immune-mediated necrotizing myopathies and their treatments. Curr Opin Rheumatol 2016; 28: 619-624
  • 54 Fischer N, Preusse C, Radke J. et al Sequestosome-1 (p62) expression reveals chaperone-assisted selective autophagy in immune-mediated necrotizing myopathies. Brain Pathol 2020; 30: 261-271
  • 55 Aouizerate J, De Antonio M, Bassez G. et al Myofiber HLA-DR expression is a distinctive biomarker for antisynthetase-associated myopathy. Acta Neuropathol Commun 2014; 2: 154
  • 56 Stenzel W, Preusse C, Allenbach Y. et al Nuclear actin aggregation is a hallmark of anti-synthetase syndrome-induced dysimmune myopathy. Neurology 2015; 84: 1346-1354
  • 57 Uruha A, Suzuki S, Suzuki N. et al Perifascicular necrosis in anti-synthetase syndrome beyond anti-Jo-1. Brain 2016; 139: e50
  • 58 Allenbach Y, Hervier B, Stenzel W. et al Reply: Perifascicular necrosis in anti-synthetase syndrome beyond anti-Jo-1. Brain 2016; 139: e51
  • 59 Benveniste O, Stenzel W, Hilton-Jones D. et al Amyloid deposits and inflammatory infiltrates in sporadic inclusion body myositis: the inflammatory egg comes before the degenerative chicken. Acta Neuropathol 2015; 129: 611-624
  • 60 Greenberg SA. Inclusion Body Myositis. Continuum (Minneap Minn) 2016; 22: 1871-1888
  • 61 Greenberg SA, Pinkus JL, Amato AA. et al Association of inclusion body myositis with T cell large granular lymphocytic leukaemia. Brain 2016; 139: 1348-1360
  • 62 Greenberg SA, Pinkus JL, Kong SW. et al Highly differentiated cytotoxic T cells in inclusion body myositis. Brain 2019; 142: 2590-2604
  • 63 Schmidt J, Dalakas MC. Inclusion body myositis: from immunopathology and degenerative mechanisms to treatment perspectives. Expert Rev Clin Immunol 2013; 9: 1125-1133
  • 64 Weihl CC, Mammen AL. Sporadic inclusion body myositis - a myodegenerative disease or an inflammatory myopathy. Neuropathol Appl Neurobiol 2017; 43: 82-91
  • 65 Zschuntzsch J, Voss J, Creus K. et al Provision of an explanation for the inefficacy of immunotherapy in sporadic inclusion body myositis: quantitative assessment of inflammation and beta-amyloid in the muscle. Arthritis Rheum 2012; 64: 4094-4103
  • 66 Goyal NA, Cash TM, Alam U. et al Seropositivity for NT5c1A antibody in sporadic inclusion body myositis predicts more severe motor, bulbar and respiratory involvement. J Neurol Neurosurg Psychiatry 2016; 87: 373-378
  • 67 Amato AA, Griggs RC. Unicorns, dragons, polymyositis, and other mythological beasts. Neurology 2003; 61: 288-289
  • 68 Bronner IM, Linssen WH, van der Meulen MF. et al Polymyositis: an ongoing discussion about a disease entity. Arch Neurol 2004; 61: 132-135
  • 69 Bronner IM, van der Meulen MF, de Visser M. et al Long-term outcome in polymyositis and dermatomyositis. Ann Rheum Dis 2006; 65: 1456-1461
  • 70 van der Meulen MF, Bronner IM, Hoogendijk JE. et al Polymyositis: an overdiagnosed entity. Neurology 2003; 61: 316-321
  • 71 Bronner IM, Hoogendijk JE, Veldman H. et al Tubuloreticular structures in different types of myositis: implications for pathogenesis. Ultrastruct Pathol 2008; 32: 123-126
  • 72 Chahin N, Engel AG. Correlation of muscle biopsy, clinical course, and outcome in PM and sporadic IBM. Neurology 2008; 70: 418-424
  • 73 Vilela VS, Prieto-Gonzalez S, Milisenda JC. et al Polymyositis, a very uncommon isolated disease: clinical and histological re-evaluation after long-term follow-up. Rheumatol Int 2015; 35: 915-920
  • 74 Benveniste O, Romero NB. Myositis or dystrophy? Traps and pitfalls. Presse Med 2011; 40: e249-e255
  • 75 Aggarwal R, Cassidy E, Fertig N. et al Patients with non-Jo-1 anti-tRNA-synthetase autoantibodies have worse survival than Jo-1 positive patients. Ann Rheum Dis 2014; 73: 227-232
  • 76 Alenzi FM. Myositis Specific Autoantibodies: A Clinical Perspective. Open Access Rheumatol 2020; 12: 9-14
  • 77 Bernstein RM, Morgan SH, Chapman J. et al Anti-Jo-1 antibody: a marker for myositis with interstitial lung disease. Br Med J (Clin Res Ed) 1984; 289: 151-152
  • 78 Brouwer R, Hengstman GJ, Vree Egberts W. et al Autoantibody profiles in the sera of European patients with myositis. Ann Rheum Dis 2001; 60: 116-123
  • 79 Mathews MB, Bernstein RM. Myositis autoantibody inhibits histidyl-tRNA synthetase: a model for autoimmunity. Nature 1983; 304: 177-179
  • 80 Sharma A, Bhattarai D, Gupta A. et al Autoantibody Profile of Children with Juvenile Dermatomyositis. Indian J Pediatr 2021;
  • 81 Fujimoto M. [Myositis-specific autoantibodies]. Brain Nerve 2013; 65: 449-460
  • 82 Bunn CC, Bernstein RM, Mathews MB. Autoantibodies against alanyl-tRNA synthetase and tRNAAla coexist and are associated with myositis. J Exp Med 1986; 163: 1281-1291
  • 83 Hirakata M, Suwa A, Nagai S. et al Anti-KS: identification of autoantibodies to asparaginyl-transfer RNA synthetase associated with interstitial lung disease. J Immunol 1999; 162: 2315-2320
  • 84 Silva MB, Silva MG, Shinjo SK. Serum hyaluronic acid in polymyositis: high serum levels tend to correlate with disease activity. Acta Reumatol Port 2014; 39: 248-253
  • 85 Betteridge Z, Gunawardena H, North J. et al Anti-synthetase syndrome: a new autoantibody to phenylalanyl transfer RNA synthetase (anti-Zo) associated with polymyositis and interstitial pneumonia. Rheumatology (Oxford) 2007; 46: 1005-1008
  • 86 Mahler M, Miller FW, Fritzler MJ. Idiopathic inflammatory myopathies and the anti-synthetase syndrome: a comprehensive review. Autoimmun Rev 2014; 13: 367-371
  • 87 Chinoy H, Li CK, Platt H. et al. Genetic association study of NF-kappaB genes in UK Caucasian adult and juvenile onset idiopathic inflammatory myopathy. Rheumatology (Oxford) 2012; 51: 794-799
  • 88 Klein M, Mann H, Plestilova L. et al Increasing incidence of immune-mediated necrotizing myopathy: single-centre experience. Rheumatology (Oxford) 2015; 54: 2010-2014
  • 89 Wichmann O, Yoon IK, Vong S. et al Dengue in Thailand and Cambodia: an assessment of the degree of underrecognized disease burden based on reported cases. PLoS Negl Trop Dis 2011; 5: e996
  • 90 Padala S, Thompson PD. Statins as a possible cause of inflammatory and necrotizing myopathies. Atherosclerosis 2012; 222: 15-21
  • 91 Asakawa K, Yoshizawa K, Aoki A. et al Comparison of cytokine profiles between anti-ARS antibody-positive interstitial lung diseases and those with anti-MDA-5 antibodies. Clin Rheumatol 2020; 39: 2171-2178
  • 92 DeWane ME, Waldman R, Lu J. Dermatomyositis: Clinical features and pathogenesis. J Am Acad Dermatol 2020; 82: 267-281
  • 93 Peisley A, Lin C, Wu B. et al Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc Natl Acad Sci U S A 2011; 108: 21010-21015
  • 94 Sato S, Hoshino K, Satoh T. et al RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: Association with rapidly progressive interstitial lung disease. Arthritis Rheum 2009; 60: 2193-2200
  • 95 Takada T, Aoki A, Asakawa K. et al Serum cytokine profiles of patients with interstitial lung disease associated with anti-CADM-140/MDA5 antibody positive amyopathic dermatomyositis. Respir Med 2015; 109: 1174-1180
  • 96 Targoff IN, Reichlin M. The association between Mi-2 antibodies and dermatomyositis. Arthritis Rheum 1985; 28: 796-803
  • 97 Gunawardena H, Wedderburn LR, Chinoy H. et al Autoantibodies to a 140-kd protein in juvenile dermatomyositis are associated with calcinosis. Arthritis Rheum 2009; 60: 1807-1814
  • 98 Ichimura Y, Matsushita T, Hamaguchi Y. et al Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies: possible association with malignancy. Ann Rheum Dis 2012; 71: 710-713
  • 99 Merlo G, Clapasson A, Cozzani E. et al Specific autoantibodies in dermatomyositis: a helpful tool to classify different clinical subsets. Arch Dermatol Res 2017; 309: 87-95
  • 100 Nistala K, Wedderburn LR. Update in juvenile myositis. Curr Opin Rheumatol 2013; 25: 742-746
  • 101 Targoff IN. Myositis specific autoantibodies. Curr Rheumatol Rep 2006; 8: 196-203
  • 102 Betteridge ZE, Gunawardena H, McHugh NJ. Pathogenic mechanisms of disease in myositis: autoantigens as clues. Curr Opin Rheumatol 2009; 21: 604-609
  • 103 Ghirardello A, Bassi N, Palma L. et al Autoantibodies in polymyositis and dermatomyositis. Curr Rheumatol Rep 2013; 15: 335
  • 104 Reeves WH, Nigam SK, Blobel G. Human autoantibodies reactive with the signal-recognition particle. Proc Natl Acad Sci U S A 1986; 83: 9507-9511
  • 105 Betteridge Z, McHugh N. Myositis-specific autoantibodies: an important tool to support diagnosis of myositis. J Intern Med 2016; 280: 8-23
  • 106 De Vooght J, Vulsteke JB, De Haes P. et al Anti-TIF1-gamma autoantibodies: warning lights of a tumour autoantigen. Rheumatology (Oxford) 2020; 59: 469-477
  • 107 Amlani A, Choi MY, Tarnopolsky M. et al Anti-NT5c1A Autoantibodies as Biomarkers in Inclusion Body Myositis. Front Immunol 2019; 10: 745
  • 108 Herbert MK, Stammen-Vogelzangs J, Verbeek MM. et al Disease specificity of autoantibodies to cytosolic 5'-nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Ann Rheum Dis 2016; 75: 696-701
  • 109 Lloyd TE, Christopher-Stine L, Pinal-Fernandez I. et al Cytosolic 5'-Nucleotidase 1A As a Target of Circulating Autoantibodies in Autoimmune Diseases. Arthritis Care Res (Hoboken) 2016; 68: 66-71
  • 110 Yeker RM, Pinal-Fernandez I, Kishi T. et al Anti-NT5C1A autoantibodies are associated with more severe disease in patients with juvenile myositis. Ann Rheum Dis 2018; 77: 714-719
  • 111 Belizna C, Henrion D, Beucher A. et al Anti-Ku antibodies: Clinical, genetic and diagnostic insights. Autoimmun Rev 2010; 9: 691-694
  • 112 Lakota K, Thallinger GG, Sodin-Semrl S. et al International cohort study of 73 anti-Ku-positive patients: association of p70/p80 anti-Ku antibodies with joint/bone features and differentiation of disease populations by using principal-components analysis. Arthritis Res Ther 2012; 14: R2
  • 113 Mimori T, Ohosone Y, Hama N. et al Isolation and characterization of cDNA encoding the 80-kDa subunit protein of the human autoantigen Ku (p70/p80) recognized by autoantibodies from patients with scleroderma-polymyositis overlap syndrome. Proc Natl Acad Sci U S A 1990; 87: 1777-1781
  • 114 Brouwer R, Pruijn GJ, van Venrooij WJ. The human exosome: an autoantigenic complex of exoribonucleases in myositis and scleroderma. Arthritis Res 2001; 3: 102-106
  • 115 Brouwer R, Vree Egberts WT, Hengstman GJ. et al Autoantibodies directed to novel components of the PM/Scl complex, the human exosome. Arthritis Res 2002; 4: 134-138
  • 116 De Lorenzo R, Pinal-Fernandez I, Huang W. et al Muscular and extramuscular clinical features of patients with anti-PM/Scl autoantibodies. Neurology 2018; 90: e2068-e2076
  • 117 Lega JC, Fabien N, Reynaud Q. et al The clinical phenotype associated with myositis-specific and associated autoantibodies: a meta-analysis revisiting the so-called antisynthetase syndrome. Autoimmun Rev 2014; 13: 883-891
  • 118 Larman HB, Salajegheh M, Nazareno R. et al Cytosolic 5'-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol 2013; 73: 408-418
  • 119 Salajegheh M, Lam T, Greenberg SA. Autoantibodies against a 43 KDa muscle protein in inclusion body myositis. PLoS One 2011; 6: e20266
  • 120 Salajegheh M, Pinkus JL, Taylor JP. et al Sarcoplasmic redistribution of nuclear TDP-43 in inclusion body myositis. Muscle Nerve 2009; 40: 19-31
  • 121 Stuhlmuller B, Feist E, Haupl T. et al [New aspects on the pathogenesis of myositis]. Z Rheumatol 2013; 72: 209-219
  • 122 Stuhlmuller B, Jerez R, Hausdorf G. et al Novel autoantibodies against muscle-cell membrane proteins in patients with myositis. Arthritis Rheum 1996; 39: 1860-1868
  • 123 Stuhlmuller B, Schneider U, Gonzalez-Gonzalez JB. et al Disease Specific Autoantibodies in Idiopathic Inflammatory Myopathies. Front Neurol 2019; 10: 438
  • 124 Bilazarian SD, Taylor AJ, Brezinski D. et al High-grade atrioventricular heart block in an adult with systemic lupus erythematosus: the association of nuclear RNP (U1 RNP) antibodies, a case report, and review of the literature. Arthritis Rheum 1989; 32: 1170-1174
  • 125 Casal-Dominguez M, Pinal-Fernandez I, Corse AM. et al Muscular and extramuscular features of myositis patients with anti-U1-RNP autoantibodies. Neurology 2019; 92: e1416-e1426
  • 126 Mimori T, Hinterberger M, Pettersson I. et al Autoantibodies to the U2 small nuclear ribonucleoprotein in a patient with scleroderma-polymyositis overlap syndrome. J Biol Chem 1984; 259: 560-565
  • 127 Rober N, Rejzek M, Aringer M. et al Multiparametric Analysis of Connective Tissue Disease Specific Autoantibodies Using a Spot Immunoassay. Clin Lab 2019; 65
  • 128 Wesner N, Uruha A, Suzuki S. et al Anti-RNP antibodies delineate a subgroup of myositis: A systematic retrospective study on 46 patients. Autoimmun Rev 2020; 19: 102465
  • 129 Bachmann M, Hilker M, Grolz D. et al Different La/SS-B mRNA isoforms are expressed in salivary gland tissue of patients with primary Sjogren's syndrome. J Autoimmun 1996; 9: 757-766
  • 130 Beckman KA, Luchs J, Milner MS. et al The Potential Role for Early Biomarker Testing as Part of a Modern, Multidisciplinary Approach to Sjogren's Syndrome Diagnosis. Adv Ther 2017; 34: 799-812
  • 131 Li JM, Horsfall AC, Maini RN. Anti-La (SS-B) but not anti-Ro52 (SS-A) antibodies cross-react with laminin--a role in the pathogenesis of congenital heart block?. Clin Exp Immunol 1995; 99: 316-324
  • 132 Manthorpe R, Teppo AM, Bendixen G. et al Antibodies to SS-B in chronic inflammatory connective tissue diseases. Relationship with HLA-Dw2 and HLA-Dw3 antigens in primary Sjogren's syndrome. Arthritis Rheum 1982; 25: 662-667
  • 133 Teppo AM, Gripenberg M, Kurki P. et al Purification and characterization of a nuclear SS-B antigen. Scand J Immunol 1982; 15: 1-7
  • 134 Arnett FC, Targoff IN, Mimori T. et al Interrelationship of major histocompatibility complex class II alleles and autoantibodies in four ethnic groups with various forms of myositis. Arthritis Rheum 1996; 39: 1507-1518
  • 135 Chung SH, Bent EI, Weiss MD. et al Sporadic inclusion body myositis and primary Sjogren’s syndrome: an overlooked diagnosis. Clin Rheumatol 2021;
  • 136 Isenberg D, Cambridge J, Maddison PJ. Prevalence of Ro (SS-A) antibodies in patients with polymyositis. Arthritis Rheum 1987; 30: 1320
  • 137 La Corte R, Lo Mo Naco A, Locaputo A. et al In patients with antisynthetase syndrome the occurrence of anti-Ro/SSA antibodies causes a more severe interstitial lung disease. Autoimmunity 2006; 39: 249-253
  • 138 Ohashi K, Sada KE, Nakai Y. et al Cluster Analysis Using Anti-Aminoacyl-tRNA Synthetases and SS-A/Ro52 antibodies in Patients With Polymyositis/Dermatomyositis. J Clin Rheumatol 2019; 25: 246-251
  • 139 Ghannam K, Martinez-Gamboa L, Spengler L. et al Upregulation of immunoproteasome subunits in myositis indicates active inflammation with involvement of antigen presenting cells, CD8 T-cells and IFNGamma. PLoS One 2014; 9: e104048
  • 140 Houtman M, Ekholm L, Hesselberg E. et al T-cell transcriptomics from peripheral blood highlights differences between polymyositis and dermatomyositis patients. Arthritis Res Ther 2018; 20: 188
  • 141 Li L, Chen S, Wen X. et al Positive Association between ANKRD55 Polymorphism 7731626 and Dermatomyositis/Polymyositis with Interstitial Lung Disease in Chinese Han Population. Biomed Res Int 2017; 2017: 2905987
  • 142 Ugidos N, Mena J, Baquero S. et al Interactome of the Autoimmune Risk Protein ANKRD55. Front Immunol 2019; 10: 2067
  • 143 Jiang T, Huang Y, Liu H. et al Reduced miR-146a Promotes REG3A Expression and Macrophage Migration in Polymyositis and Dermatomyositis. Front Immunol 2020; 11: 37
  • 144 Jinnin M. Recent progress in studies of miRNA and skin diseases. J Dermatol 2015; 42: 551-558
  • 145 Kinder TB, Heier CR, Tully CB. et al Muscle Weakness in Myositis: MicroRNA-Mediated Dystrophin Reduction in a Myositis Mouse Model and Human Muscle Biopsies. Arthritis Rheumatol 2020; 72: 1170-1183
  • 146 Gao X, Han L, Yuan L. et al HLA class II alleles may influence susceptibility to adult dermatomyositis and polymyositis in a Han Chinese population. BMC Dermatol 2014; 14: 9
  • 147 Miller FW, Chen W, O’Hanlon TP. et al Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun 2015; 16: 470-480
  • 148 Remuzgo-Martinez S, Atienza-Mateo B, Ocejo-Vinyals JG. et al HLA association with the susceptibility to anti-synthetase syndrome. Joint Bone Spine 2020; 88: 105115
  • 149 Rothwell S, Cooper RG, Lundberg IE. et al Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis 2016; 75: 1558-1566
  • 150 Peng QL, Lin JM, Zhang YB. et al Targeted capture sequencing identifies novel genetic variations in Chinese patients with idiopathic inflammatory myopathies. Int J Rheum Dis 2018; 21: 1619-1626
  • 151 Zhang J, Khasanova E, Zhang L. Bioinformatics analysis of gene expression profiles of Inclusion body myositis. Scand J Immunol 2020; 91: e12887
  • 152 Lazzaroni MG, Marasco E, Campochiaro C. et al The clinical phenotype of Systemic Sclerosis patients with anti-PM/Scl antibodies: results from the EUSTAR cohort. Rheumatology (Oxford) 2021;
  • 153 Zanframundo G, Tripoli A, Cometi L. et al One year in review 2020: idiopathic inflammatory myopathies. Clin Exp Rheumatol 2021; 39: 1-12
  • 154 Barsotti S, Bruni C, Cometi L. et al One year in review 2017: idiopathic inflammatory myopathies. Clin Exp Rheumatol 2017; 35: 875-884
  • 155 Cavagna L, Trallero-Araguas E, Meloni F. et al Influence of Antisynthetase Antibodies Specificities on Antisynthetase Syndrome Clinical Spectrum Time Course. J Clin Med 2019; 8