Pneumologie 2022; 76(03): 159-216
DOI: 10.1055/a-1554-2625
Leitlinie

S3-Leitlinie Sauerstoff in der Akuttherapie beim Erwachsenen

German S3 Guideline – Oxygen Therapy in the Acute Care of Adult Patients
Jens Gottlieb
 1   Klinik für Pneumologie, Medizinische Hochschule Hannover
 2   Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH) im Deutschen Zentrum für Lungenforschung (DZL)
,
Philipp Capetian
 3   Klinik für Neurologie, Neurologische Intensivstation, Universitätsklinikum Würzburg
,
Uwe Hamsen
 4   Fachbereich für Unfallchirurgie und Orthopädie, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum
,
Uwe Janssens
 5   Innere Medizin und internistische Intensivmedizin, Sankt Antonius Hospital GmbH, Eschweiler
,
Christian Karagiannidis
 6   Abteilung für Pneumologie und Beatmungsmedizin, ARDS/ECMO Zentrum, Lungenklinik Köln-Merheim
,
Stefan Kluge
 7   Klinik für Intensivmedizin, Universitätsklinikum Eppendorf, Hamburg
,
Marco König
 8   Deutscher Berufsverband Rettungsdienst e. V., Lübeck
,
Andreas Markewitz
 9   ehem. Klinik für Herz- und Gefäßchirurgie Bundeswehrzentralkrankenhaus Koblenz
,
Monika Nothacker
10   Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V., Marburg
,
Sabrina Roiter
11   Israelitisches Krankenhaus Hamburg, Intensivstation
,
Susanne Unverzagt
12   Abteilung für Allgemeinmedizin, Universität Leipzig
,
Wolfgang Veit
13   Bundesverband der Organtransplantierten e. V., Marne
,
Thomas Volk
14   Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum des Saarlandes, Homburg/Saar
,
Christian Witt
15   Seniorprofessor Innere Medizin und Pneumologie, Charité Berlin
,
René Wildenauer
16   Hausarztzentrum Wiesentheid
,
Heinrich Worth
17   Facharztzentrum Fürth
,
Thomas Fühner
18   Krankenhaus Siloah, Klinik für Pneumologie und Beatmungsmedizin, Klinikum Region Hannover
 2   Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH) im Deutschen Zentrum für Lungenforschung (DZL)
› Institutsangaben

Zusammenfassung

Hintergrund Sauerstoff (O2) ist ein Arzneimittel mit spezifischen biochemischen und physiologischen Eigenschaften, einem definierten Dosis-Wirkungsbereich und mit unerwünschten Wirkungen. Im Jahr 2015 wurden 14 % von über 55 000 Krankenhauspatienten in Großbritannien mit O2 behandelt. Nur 42 % der Patienten hatten dabei eine O2-Verordnung. Gesundheitspersonal ist oft unsicher über die Relevanz einer Hypoxämie, und es besteht ein eingeschränktes Bewusstsein für die Risiken einer Hyperoxämie. In den letzten Jahren wurden zahlreiche randomisierte kontrollierte Studien zu Zielen der Sauerstofftherapie veröffentlicht. Eine nationale Leitlinie ist deswegen dringend erforderlich.

Methoden Im Rahmen des Leitlinienprogramms der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF) wurde unter Beteiligung von 10 Fachgesellschaften eine S3-Leitlinie entwickelt und im Juni 2021 veröffentlicht. Bis zum 1. 2. 2021 wurde eine Literaturrecherche durchgeführt, um 10 Schlüsselfragen zu beantworten. Zur Klassifizierung von Studientypen hinsichtlich ihrer Validität wurde das Oxford Centre for Evidence-Based Medicine (CEBM) System („The Oxford 2011 Levels of Evidence“) verwendet. Grading of Recommendations, Assessment, Development and Evaluation (GRADE) wurde verwendet und zur Bewertung der Evidenzqualität und zur Einstufung von Leitlinienempfehlungen wurde ein formaler Konsensbildungsprozess durchgeführt.

Ergebnisse Die Leitlinie enthält 34 evidenzbasierte Empfehlungen zu Indikation, Verordnung, Überwachung und Abbruch der Sauerstofftherapie in der Akutversorgung. Die Hauptindikation für die O2-Therapie ist Hypoxämie. In der Akutmedizin sollten sowohl Hypoxämie als auch Hyperoxämie vermieden werden. Hyperoxämie scheint mit einer erhöhten Sterblichkeit verbunden zu sein, insbesondere bei Patienten mit Hyperkapnie. Die Leitlinie empfiehlt Zielsauerstoffsättigung für die Akuttherapie mit O2 ohne Differenzierung zwischen Diagnosen. Zielbereiche sind abhängig vom Hyperkapnierisko und Beatmungsstatus. Die Leitlinie bietet einen Überblick über verfügbare Sauerstoffzufuhrsysteme und enthält Empfehlungen für deren Auswahl basierend auf Patientensicherheit und -komfort.

Fazit Dies ist die erste nationale Leitlinie zum Einsatz von Sauerstoff in der Akutmedizin. Sie richtet sich an medizinisches Fachpersonal, das Sauerstoff außerklinisch und stationär anwendet. Sie ist bis zum 30. 06. 2024 gültig.

Abstract

Background Oxygen (O2) is a drug with specific biochemical and physiologic properties, a range of effective doses and may have side effects. In 2015, 14 % of over 55 000 hospital patients in the UK were using oxygen. 42 % of patients received this supplemental oxygen without a valid prescription. Healthcare professionals are frequently uncertain about the relevance of hypoxemia and have low awareness about the risks of hyperoxemia. Numerous randomized controlled trials about targets of oxygen therapy have been published in recent years. A national guideline is urgently needed.

Methods A S3-guideline was developed and published within the Program for National Disease Management Guidelines (AWMF) with participation of 10 medical associations. Literature search was performed until Feb 1st 2021 to answer 10 key questions. The Oxford Centre for Evidence-Based Medicine (CEBM) System (“The Oxford 2011 Levels of Evidence”) was used to classify types of studies in terms of validity. Grading of Recommendations, Assessment, Development and Evaluation (GRADE) was used and for assessing the quality of evidence and for grading guideline recommendation and a formal consensus-building process was performed.

Results The guideline includes 34 evidence-based recommendations about indications, prescription, monitoring and discontinuation of oxygen therapy in acute care. The main indication for O2 therapy is hypoxemia. In acute care both hypoxemia and hyperoxemia should be avoided. Hyperoxemia also seems to be associated with increased mortality, especially in patients with hypercapnia. The guideline provides recommended target oxygen saturation for acute medicine without differentiating between diagnoses. Target ranges for oxygen saturation are depending on ventilation status risk for hypercapnia. The guideline provides an overview of available oxygen delivery systems and includes recommendations for their selection based on patient safety and comfort.

Conclusion This is the first national guideline on the use of oxygen in acute care. It addresses healthcare professionals using oxygen in acute out-of-hospital and in-hospital settings. The guideline will be valid for 3 years until June 30, 2024.



Publikationsverlauf

Artikel online veröffentlicht:
02. September 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 O’Driscoll BR. British Thoracic Society. Emergency Oxygen Audit Report. https://www.brit-thoracic.org.uk/document-library/quality-improvement/audit-reports/emergency-oxygen-2015/2015
  • 2 O'Driscoll BR, Howard LS, Earis J. et al. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax 2017; 72 (Suppl. 01) ii1-ii90
  • 3 Siemieniuk RAC, Chu DK, Kim LH. et al. Oxygen therapy for acutely ill medical patients: a clinical practice guideline. BMJ 2018; 363: k4169
  • 4 Blodgett AN. The Continuous Inhalation of Oxygen in Cases of Pneumonia Otherwise Fatal, and in Other Diseases. Boston Med Surg J 1890; 123: 481-485
  • 5 Breuer HW, Groeben H, Breuer J. et al. Oxygen saturation calculation procedures: a critical analysis of six equations for the determination of oxygen saturation. Intensive Care Med 1989; 15: 385-389
  • 6 Gothgen IH, Siggaard-Andersen O, Kokholm G. Variations in the hemoglobin-oxygen dissociation curve in 10079 arterial blood samples. Scand J Clin Lab Invest Suppl 1990; 203: 87-90
  • 7 Diekmann MSU. Berechnung eines Standard-PaO2 in Analogie zum Standard-Bikarbonat. Atemw Lungenkr 1984; 10: 248-260
  • 8 Sorbini CA, Grassi V, Solinas E. et al. Arterial oxygen tension in relation to age in healthy subjects. Respiration 1968; 25: 3-13
  • 9 Mellemgaard K. The alveolar-arterial oxygen difference: its size and components in normal man. Acta Physiol Scand 1966; 67: 10-20
  • 10 Smith GB, Prytherch DR, Watson D. et al. S(p)O(2) values in acute medical admissions breathing air -- implications for the British Thoracic Society guideline for emergency oxygen use in adult patients?. Resuscitation 2012; 83: 1201-1205
  • 11 Beasley R, Aldington S, Robinson G. Is it time to change the approach to oxygen therapy in the breathless patient?. Thorax 2007; 62: 840-841
  • 12 Kelly AM, McAlpine R, Kyle E. How accurate are pulse oximeters in patients with acute exacerbations of chronic obstructive airways disease?. Respir Med 2001; 95: 336-340
  • 13 Lee WW, Mayberry K, Crapo R. et al. The accuracy of pulse oximetry in the emergency department. Am J Emerg Med 2000; 18: 427-431
  • 14 Ebmeier SJ, Barker M, Bacon M. et al. A two centre observational study of simultaneous pulse oximetry and arterial oxygen saturation recordings in intensive care unit patients. Anaesth Intensive Care 2018; 46: 297-303
  • 15 Considine J. The reliability of clinical indicators of oxygenation: a literature review. Contemp Nurse 2005; 18: 258-267
  • 16 Helmholz Jr HF. The abbreviated alveolar air equation. Chest 1979; 75: 748
  • 17 OʼReilly Nugent A, Kelly PT, Stanton J. et al. Measurement of oxygen concentration delivered via nasal cannulae by tracheal sampling. Respirology 2014; 19: 538-543
  • 18 Abdo WF, Heunks LM. Oxygen-induced hypercapnia in COPD: myths and facts. Crit Care 2012; 16: 323
  • 19 Physicians RCo. National Early Warning Score (NEWS) 2: Standardising the assesment of acute-illness severity in the NHS. Updates report of a working party. London: RCP; 2017
  • 20 Uronis HE, Currow DC, McCrory DC. et al. Oxygen for relief of dyspnoea in mildly- or non-hypoxaemic patients with cancer: a systematic review and meta-analysis. Br J Cancer 2008; 98: 294-299
  • 21 Uronis H, McCrory DC, Samsa G. et al. Symptomatic oxygen for non-hypoxaemic chronic obstructive pulmonary disease. Cochrane Database Syst Rev; 2011 CD006429
  • 22 Cranston JM, Crockett A, Currow D. Oxygen therapy for dyspnoea in adults. Cochrane Database Syst Rev; 2008 CD004769
  • 23 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft DK, AWMF) Palliativmedizin für Patienten mit einer nicht-heilbaren Krebserkrankung, Langversion 2.1. Leitlinienprogramm Onkologie. Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF; 2020
  • 24 Abernethy AP, McDonald CF, Frith PA. et al. Effect of palliative oxygen versus room air in relief of breathlessness in patients with refractory dyspnoea: a double-blind, randomised controlled trial. The Lancet 2010; 376: 784-793
  • 25 Lemyze M, Guiot A, Mallat J. et al. The obesity supine death syndrome (OSDS). Obes Rev 2018; 19: 550-556
  • 26 Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: a clinical trial. Nocturnal Oxygen Therapy Trial Group. Ann Intern Med 1980; 93: 391-398
  • 27 Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet 1981; 1: 681-686
  • 28 Gilbert-Kawai ET, Mitchell K, Martin D. et al. Permissive hypoxaemia versus normoxaemia for mechanically ventilated critically ill patients. Cochrane Database Syst Rev; 2014 CD009931
  • 29 Askie LM, Darlow BA, Finer N. et al. Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. JAMA 2018; 319: 2190-2201
  • 30 Barrot L, Asfar P, Mauny F. et al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. N Engl J Med 2020; 382: 999-1008
  • 31 Bleyer AJ, Vidya S, Russell GB. et al. Longitudinal analysis of one million vital signs in patients in an academic medical center. Resuscitation 2011; 82: 1387-1392
  • 32 Goodacre S, Turner J, Nicholl J. Prediction of mortality among emergency medical admissions. Emerg Med J 2006; 23: 372-375
  • 33 Hebert PC, Wells G, Blajchman MA. et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 1999; 340: 409-417
  • 34 Ackland GL, Iqbal S, Paredes LG. et al. Individualised oxygen delivery targeted haemodynamic therapy in high-risk surgical patients: a multicentre, randomised, double-blind, controlled, mechanistic trial. Lancet Respir Med 2015; 3: 33-41
  • 35 Lobo SM, Salgado PF, Castillo VG. et al. Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med 2000; 28: 3396-3404
  • 36 Heyland DK, Cook DJ, King D. et al. Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med 1996; 24: 517-524
  • 37 Meschia G. Fetal oxygenation and maternal ventilation. Clin Chest Med 2011; 32: 15-19
  • 38 Wyss-Dunant E. Acclimatization shock; studies in the Himalaya mountains. Minerva Med 1955; 46: 675-685
  • 39 van der Post J, Noordzij LA, de Kam ML. et al. Evaluation of tests of central nervous system performance after hypoxemia for a model for cognitive impairment. J Psychopharmacol 2002; 16: 337-343
  • 40 Harboe M. Lactic acid content in human venous blood during hypoxia at high altitude. Acta Physiol Scand 1957; 40: 248-253
  • 41 Grubbstrom J, Berglund B, Kaijser L. Myocardial oxygen supply and lactate metabolism during marked arterial hypoxaemia. Acta Physiol Scand 1993; 149: 303-310
  • 42 Neill WA. Effects of arterial hypoxemia and hyperoxia on oxygen availability for myocardial metabolism. Patients with and without coronary heart disease. Am J Cardiol 1969; 24: 166-171
  • 43 Chu DK, Kim LHY, Young PJ. et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. The Lancet 2018; 391: 1693-1705
  • 44 Hafner S, Beloncle F, Koch A. et al. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann Intensive Care 2015; 5: 42
  • 45 Barbateskovic M, Schjorring OL, Russo Krauss S. et al. Higher versus lower fraction of inspired oxygen or targets of arterial oxygenation for adults admitted to the intensive care unit. Cochrane Database Syst Rev 2019; 2019: CD012631
  • 46 Asfar P, Schortgen F, Boisrame-Helms J. et al. Hyperoxia and hypertonic saline in patients with septic shock (HYPERS2S): a two-by-two factorial, multicentre, randomised, clinical trial. Lancet Respir Med 2017; 5: 180-190
  • 47 Edmark L, Kostova-Aherdan K, Enlund M. et al. Optimal oxygen concentration during induction of general anesthesia. Anesthesiology 2003; 98: 28-33
  • 48 Sackner MA, Landa J, Hirsch J. et al. Pulmonary effects of oxygen breathing. A 6-hour study in normal men. Ann Intern Med 1975; 82: 40-43
  • 49 Bitterman H. Bench-to-bedside review: oxygen as a drug. Crit Care 2009; 13: 205
  • 50 Magder S. Reactive oxygen species: toxic molecules or spark of life?. Crit Care 2006; 10: 208
  • 51 Downs JB, Smith RA. Increased inspired oxygen concentration may delay diagnosis and treatment of significant deterioration in pulmonary function. Crit Care Med 1999; 27: 2844-2846
  • 52 Austin MA, Wills KE, Blizzard L. et al. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ 2010; 341: c5462
  • 53 Farquhar H, Weatherall M, Wijesinghe M. et al. Systematic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J 2009; 158: 371-377
  • 54 Sepehrvand N, James SK, Stub D. et al. Effects of supplemental oxygen therapy in patients with suspected acute myocardial infarction: a meta-analysis of randomised clinical trials. Heart 2018; 104: 1691-1698
  • 55 Stub D, Smith K, Bernard S. et al. Air Versus Oxygen in ST-Segment-Elevation Myocardial Infarction. Circulation 2015; 131: 2143-2150
  • 56 Wetterslev J, Meyhoff CS, Jorgensen LN. et al. The effects of high perioperative inspiratory oxygen fraction for adult surgical patients. Cochrane Database Syst Rev; 2015 CD008884
  • 57 Meyhoff CS, Jorgensen LN, Wetterslev J. et al. Increased long-term mortality after a high perioperative inspiratory oxygen fraction during abdominal surgery: follow-up of a randomized clinical trial. Anesth Analg 2012; 115: 849-854
  • 58 Ahrens T. Changing perspectives in the assessment of oxygenation. Crit Care Nurse 1993; 13: 78-83
  • 59 Bateman NT, Leach RM. ABC of oxygen. Acute oxygen therapy. BMJ 1998; 317: 798-801
  • 60 Lumb ATC. Nunn and Lumbʼs Applied Respiratory Physiology. Elsevier; 2016
  • 61 Treacher DF, Leach RM. Oxygen transport-1. Basic principles. BMJ 1998; 317: 1302-1306
  • 62 Smart DR. Oxygen therapy in emergency medicine Part 1. Physiology and oxygen delivery systems. Emergency Medicine 2009; 4: 163-178
  • 63 Pruitt WC, Jacobs M. Breathing lessons: basics of oxygen therapy. Nursing 2003; 33: 43-45
  • 64 Thrush DN, Downs JB, Hodges M. et al. Does significant arterial hypoxemia alter vital signs?. J Clin Anesth 1997; 9: 355-357
  • 65 Kester L, Stoller JK. Ordering respiratory care services for hospitalized patients: practices of overuse and underuse. Cleve Clin J Med 1992; 59: 581-585
  • 66 Nerlich S. Oxygen therapy. Aust Nurs J 1997; 5: 23A-23D
  • 67 Wesmiller SW, Hoffman LA. Interpreting your patientʼs oxygenation status. Orthop Nurs 1989; 8: 56-60
  • 68 Ryerson GG, Block ER. Safe use of oxygen therapy: a physiologic approach part 2. Respiratory Therapy 1983; 13: 25-30
  • 69 Bota GW, Rowe BH. Continuous monitoring of oxygen saturation in prehospital patients with severe illness: the problem of unrecognized hypoxemia. J Emerg Med 1995; 13: 305-311
  • 70 Brown LH, Manring EA, Kornegay HB. et al. Can prehospital personnel detect hypoxemia without the aid of pulse oximeters?. Am J Emerg Med 1996; 14: 43-44
  • 71 Lambert MA, Crinnion J. The role of pulse oximetry in the accident and emergency department. Arch Emerg Med 1989; 6: 211-215
  • 72 Excellence NIfHaC. Acutely Ill Patients in Hospital: Recognition of and Response to Acute Illness in Adults in Hospital. London: National Institute for Health and Clinical Excellence: Guidance; 2007
  • 73 Wheatley I. Respiratory rate 3: how to take an accurate measurement. Nursing Times [online] 2018; 114: 21-22
  • 74 Pedersen T, Nicholson A, Hovhannisyan K. et al. Pulse oximetry for perioperative monitoring. Cochrane Database Syst Rev; 2014 CD002013
  • 75 King T, Simon RH. Pulse oximetry for tapering supplemental oxygen in hospitalized patients. Evaluation of a protocol. Chest 1987; 92: 713-716
  • 76 Kellerman AL, Cofer CA, Joseph S. et al. Impact of portable pulse oximetry on arterial blood gas test ordering in an urban emergency department. Ann Emerg Med 1991; 20: 130-134
  • 77 Jubran A. Pulse oximetry. Crit Care 2015; 19: 272
  • 78 Nitzan M, Romem A, Koppel R. Pulse oximetry: fundamentals and technology update. Med Devices (Auckl) 2014; 7: 231-239
  • 79 (NICE) NIfHaCe. Chronic obstructive pulmonary disease in over 16s: diagnosis and management 2018. Available from (Last updated 26 July 2019): https://www.nice.org.uk/guidance/ng115
  • 80 Perkins GD, McAuley DF, Giles S. et al. Do changes in pulse oximeter oxygen saturation predict equivalent changes in arterial oxygen saturation?. Crit Care 2003; 7: R67
  • 81 Severinghaus JW, Naifeh KH. Accuracy of response of six pulse oximeters to profound hypoxia. Anesthesiology 1987; 67: 551-558
  • 82 Wilson BJ, Cowan HJ, Lord JA. et al. The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study. BMC Emerg Med 2010; 10: 9
  • 83 Pertzov B, Brachfeld E, Unterman A. et al. Significant Delay in the Detection of Desaturation between Finger Transmittance and Earlobe Reflectance Oximetry Probes during Fiberoptic Bronchoscopy: Analysis of 104 Cases. Lung 2019; 197: 67-72
  • 84 Bickler PE, Feiner JR, Severinghaus JW. Effects of skin pigmentation on pulse oximeter accuracy at low saturation. Anesthesiology 2005; 102: 715-719
  • 85 Bergese SD, Mestek ML, Kelley SD. et al. Multicenter Study Validating Accuracy of a Continuous Respiratory Rate Measurement Derived From Pulse Oximetry: A Comparison With Capnography. Anesth Analg 2017; 124: 1153-1159
  • 86 Milner QJ, Mathews GR. An assessment of the accuracy of pulse oximeters. Anaesthesia 2012; 67: 396-401
  • 87 Sjoding MW, Dickson RP, Iwashyna TJ. et al. Racial Bias in Pulse Oximetry Measurement. N Engl J Med 2020; 383: 2477-2478
  • 88 Feiner JR, Severinghaus JW, Bickler PE. Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: the effects of oximeter probe type and gender. Anesth Analg 2007; 105 (Suppl. 06) S18-S23
  • 89 Ortiz FO, Aldrich TK, Nagel RL. et al. Accuracy of pulse oximetry in sickle cell disease. Am J Respir Crit Care Med 1999; 159: 447-451
  • 90 Conway A, Tipton E, Liu WH. et al. Accuracy and precision of transcutaneous carbon dioxide monitoring: a systematic review and meta-analysis. Thorax 2019; 74: 157-163
  • 91 Jabre P, Jacob L, Auger H. et al. Capnography monitoring in nonintubated patients with respiratory distress. Am J Emerg Med 2009; 27: 1056-1059
  • 92 Society BT. British guideline on the management of asthma [updated 2019. national clinical guideline]. Scottish Intercollegiate Guidelines Network; 2016 Available from: https://www.brit-thoracic.org.uk/document-library/guidelines/asthma/btssign-asthma-guideline-2016/
  • 93 Carruthers DM, Harrison BD. Arterial blood gas analysis or oxygen saturation in the assessment of acute asthma?. Thorax 1995; 50: 186-188
  • 94 Raffin TA. Indications for arterial blood gas analysis. Ann Intern Med 1986; 105: 390-398
  • 95 Fichtner F, Moerer O, Laudi S. et al. Mechanical Ventilation and Extracorporeal Membrane Oxygena tion in Acute Respiratory Insufficiency. Dtsch Arztebl Int 2018; 115: 840-847
  • 96 Frat JP, Thille AW, Mercat A. et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372: 2185-2196
  • 97 Lemiale V, Mokart D, Mayaux J. et al. The effects of a 2-h trial of high-flow oxygen by nasal cannula versus Venturi mask in immunocompromised patients with hypoxemic acute respiratory failure: a multicenter randomized trial. Crit Care 2015; 19: 380
  • 98 Roca O, Caralt B, Messika J. et al. An Index Combining Respiratory Rate and Oxygenation to Predict Outcome of Nasal High-Flow Therapy. Am J Respir Crit Care Med 2019; 199: 1368-1376
  • 99 Zavorsky GS, Cao J, Mayo NE. et al. Arterial versus capillary blood gases: a meta-analysis. Respir Physiol Neurobiol 2007; 155: 268-279
  • 100 Magnet FS, Majorski DS, Callegari J. et al. Capillary PO2 does not adequately reflect arterial PO2 in hypoxemic COPD patients. Int J Chron Obstruct Pulmon Dis 2017; 12: 2647-2653
  • 101 Ekkernkamp E, Welte L, Schmoor C. et al. Spot check analysis of gas exchange: invasive versus noninvasive methods. Respiration 2015; 89: 294-303
  • 102 Richtlinien zur Organtransplantation gem. § 16 TPG. Bundesärztekammer; 2017 Available from: https://www.bundesaerztekammer.de/fileadmin/user_upload/downloads/pdf-Ordner/RL/RiliOrgaWlOvLungeTx-ab20171107.pdf
  • 103 Lim BL, Kelly AM. A meta-analysis on the utility of peripheral venous blood gas analyses in exacerbations of chronic obstructive pulmonary disease in the emergency department. Eur J Emerg Med 2010; 17: 246-248
  • 104 Byrne AL, Bennett M, Chatterji R. et al. Peripheral venous and arterial blood gas analysis in adults: are they comparable? A systematic review and meta-analysis. Respirology 2014; 19: 168-175
  • 105 Bingheng LJC, Yu C, Yijuan Y. Comparison of peripheral venous and arterial blood gas in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD): a metaanalysis. Notfall Rettungsmed 2019; 22: 620-627
  • 106 Bloom BM, Grundlingh J, Bestwick JP. et al. The role of venous blood gas in the emergency department: a systematic review and meta-analysis. Eur J Emerg Med 2014; 21: 81-88
  • 107 Kelly AM, Kyle E, McAlpine R. Venous pCO(2) and pH can be used to screen for significant hypercarbia in emergency patients with acute respiratory disease. J Emerg Med 2002; 22: 15-19
  • 108 Kelly AM, Kerr D, Middleton P. Validation of venous pCO2 to screen for arterial hypercarbia in patients with chronic obstructive airways disease. J Emerg Med 2005; 28: 377-379
  • 109 Ak A, Ogun CO, Bayir A. et al. Prediction of arterial blood gas values from venous blood gas values in patients with acute exacerbation of chronic obstructive pulmonary disease. Tohoku J Exp Med 2006; 210: 285-290
  • 110 Ibrahim I, Ooi SB, Yiong Huak C. et al. Point-of-care bedside gas analyzer: limited use of venous pCO2 in emergency patients. J Emerg Med 2011; 41: 117-123
  • 111 Friesen RM, Raber MB, Reimer DH. Oxygen concentrators: a primary oxygen supply source. Can J Anaesth 1999; 46: 1185-1190
  • 112 Edwards L, Perrin K, Williams M. et al. Randomised controlled crossover trial of the effect on PtCO2 of oxygen-driven versus air-driven nebulisers in severe chronic obstructive pulmonary disease. Emerg Med J 2012; 29: 894-898
  • 113 Bardsley G, Pilcher J, McKinstry S. et al. Oxygen versus air-driven nebulisers for exacerbations of chronic obstructive pulmonary disease: a randomised controlled trial. BMC Pulm Med 2018; 18: 157
  • 114 Gunawardena KA, Patel B, Campbell IA. et al. Oxygen as a driving gas for nebulisers: safe or dangerous?. Br Med J (Clin Res Ed) 1984; 288: 272-274
  • 115 Aubier M, Murciano D, Milic-Emili J. et al. Effects of the administration of O2 on ventilation and blood gases in patients with chronic obstructive pulmonary disease during acute respiratory failure. Am Rev Respir Dis 1980; 122: 747-754
  • 116 Costello RW, Liston R, McNicholas WT. Compliance at night with low flow oxygen therapy: a comparison of nasal cannulae and Venturi face masks. Thorax 1995; 50: 405-406
  • 117 Nolan KM, Winyard JA, Goldhill DR. Comparison of nasal cannulae with face mask for oxygen administration to postoperative patients. Br J Anaesth 1993; 70: 440-442
  • 118 Eastwood GM, OʼConnell B, Gardner A. et al. Evaluation of nasopharyngeal oxygen, nasal prongs and facemask oxygen therapy devices in adult patients: a randomised crossover trial. Anaesth Intensive Care 2008; 36: 691-694
  • 119 Stausholm K, Rosenberg-Adamsen S, Skriver M. et al. Comparison of three devices for oxygen administration in the late postoperative period. Br J Anaesth 1995; 74: 607-609
  • 120 Ayhan H, Iyigun E, Tastan S. et al. Comparison of two different oxygen delivery methods in the early postoperative period: randomized trial. J Adv Nurs 2009; 65: 1237-1247
  • 121 Jones HA, Turner SL, Hughes JM. Performance of the large-reservoir oxygen mask (Ventimask). Lancet 1984; 1: 1427-1431
  • 122 Waldau T, Larsen VH, Bonde J. Evaluation of five oxygen delivery devices in spontaneously breathing subjects by oxygraphy. Anaesthesia 1998; 53: 256-263
  • 123 Maggiore SM, Idone FA, Vaschetto R. et al. Nasal high-flow versus Venturi mask oxygen therapy after extubation. Effects on oxygenation, comfort, and clinical outcome. Am J Respir Crit Care Med 2014; 190: 282-288
  • 124 Rittayamai N, Tscheikuna J, Rujiwit P. High-flow nasal cannula versus conventional oxygen therapy after endotracheal extubation: a randomized crossover physiologic study. Respir Care 2014; 59: 485-490
  • 125 Brainard A, Chuang D, Zeng I. et al. A randomized trial on subject tolerance and the adverse effects associated with higher- versus lower-flow oxygen through a standard nasal cannula. Ann Emerg Med 2015; 65: 356-361
  • 126 Wettstein RB, Shelledy DC, Peters JI. Delivered oxygen concentrations using low-flow and high-flow nasal cannulas. Respir Care 2005; 50: 604-609
  • 127 Jensen AG, Johnson A, Sandstedt S. Rebreathing during oxygen treatment with face mask. The effect of oxygen flow rates on ventilation. Acta Anaesthesiol Scand 1991; 35: 289-292
  • 128 Bazuaye EA, Stone TN, Corris PA. et al. Variability of inspired oxygen concentration with nasal cannulas. Thorax 1992; 47: 609-611
  • 129 Harper J, Kearns N, Bird G. et al. Audit of oxygen administration to achieve a target oxygen saturation range in acutely unwell medical patients. Postgrad Med J 2021; DOI: 10.1136/postgradmedj-2020-139511.
  • 130 Physicians RCo. Standardising the assessment of acute-illness severity in the NHS NEWS Score. London: RCP; 2012
  • 131 Churpek MM, Yuen TC, Edelson DP. Predicting clinical deterioration in the hospital: the impact of outcome selection. Resuscitation 2013; 84: 564-568
  • 132 Beasley R, Chien J, Douglas J. et al. Thoracic Society of Australia and New Zealand oxygen guidelines for acute oxygen use in adults: ‛Swimming between the flags’. Respirology 2015; 20: 1182-1191
  • 133 Hofmann R, James SK, Jernberg T. et al. Oxygen Therapy in Suspected Acute Myocardial Infarction. N Engl J Med 2017; 377: 1240-1249
  • 134 ICU-ROX Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group. Mackle D, Bellomo R, Bailey M. et al. Conservative Oxygen Therapy during Mechanical Ventilation in the ICU. N Engl J Med 2020; 382: 989-998
  • 135 Roffe C, Nevatte T, Sim J. et al. Effect of Routine Low-Dose Oxygen Supplementation on Death and Disability in Adults With Acute Stroke: The Stroke Oxygen Study Randomized Clinical Trial. JAMA 2017; 318: 1125-1135
  • 136 Hardie JA, Vollmer WM, Buist AS. et al. Reference values for arterial blood gases in the elderly. Chest 2004; 125: 2053-2060
  • 137 Ranchord AM, Argyle R, Beynon R. et al. High-concentration versus titrated oxygen therapy in ST-elevation myocardial infarction: a pilot randomized controlled trial. Am Heart J 2012; 163: 168-175
  • 138 Kopsaftis Z, Carson-Chahhoud KV, Austin MA. et al. Oxygen therapy in the pre-hospital setting for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev; 2020 1. CD005534
  • 139 LʼHer E, Dias P, Gouillou M. et al. Automatic versus manual oxygen administration in the emergency department. Eur Respir J 2017; 50: 1602552
  • 140 Vonderbank S, Gibis N, Schulz A. et al. Hypercapnia at Hospital Admission as a Predictor of Mortality. Open Access Emerg Med 2020; 12: 173-180
  • 141 Pehrsson K, Bake B, Larsson S. et al. Lung function in adult idiopathic scoliosis: a 20 year follow up. Thorax 1991; 46: 474-478
  • 142 Dreher M, Neuzeret PC, Windisch W. et al. Prevalence Of Chronic Hypercapnia In Severe Chronic Obstructive Pulmonary Disease: Data From The HOmeVent Registry. Int J Chron Obstruct Pulmon Dis 2019; 14: 2377-2384
  • 143 Resta O, Foschino-Barbaro MP, Bonfitto P. et al. Prevalence and mechanisms of diurnal hypercapnia in a sample of morbidly obese subjects with obstructive sleep apnoea. Respir Med 2000; 94: 240-246
  • 144 Roberts CM, Stone RA, Buckingham RJ. et al. Acidosis, non-invasive ventilation and mortality in hospitalised COPD exacerbations. Thorax 2011; 66: 43-48
  • 145 Mountain RD, Sahn SA. Clinical features and outcome in patients with acute asthma presenting with hypercapnia. Am Rev Respir Dis 1988; 138: 535-539
  • 146 Ogna A, Quera Salva MA, Prigent H. et al. Nocturnal hypoventilation in neuromuscular disease: prevalence according to different definitions issued from the literature. Sleep Breath 2016; 20: 575-581
  • 147 Waterhouse DF, McLaughlin AM, Gallagher CG. Time course and recovery of arterial blood gases during exacerbations in adults with Cystic Fibrosis. J Cyst Fibros 2009; 8: 9-13
  • 148 Wijesinghe M, Williams M, Perrin K. et al. The effect of supplemental oxygen on hypercapnia in subjects with obesity-associated hypoventilation: a randomized, crossover, clinical study. Chest 2011; 139: 1018-1024
  • 149 Wijesinghe M, Perrin K, Healy B. et al. Randomized controlled trial of high concentration oxygen in suspected community-acquired pneumonia. J R Soc Med 2012; 105: 208-216
  • 150 Perrin K, Wijesinghe M, Healy B. et al. Randomised controlled trial of high concentration versus titrated oxygen therapy in severe exacerbations of asthma. Thorax 2011; 66: 937-941
  • 151 Pilcher J, Richards M, Eastlake L. et al. High flow or titrated oxygen for obese medical inpatients: a randomised crossover trial. Med J Aust 2017; 207: 430-434
  • 152 Echevarria C, Steer J, Wason J. et al. Oxygen therapy and inpatient mortality in COPD exacerbation. Emerg Med J 2021; 38: 170-177
  • 153 Bentsen LP, Lassen AT, Titlestad IL. et al. A change from high-flow to titrated oxygen therapy in the prehospital setting is associated with lower mortality in COPD patients with acute exacerbations: an observational cohort study. Acute Med 2020; 19: 76-82
  • 154 Girardis M, Busani S, Damiani E. et al. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit: The Oxygen-ICU Randomized Clinical Trial. JAMA 2016; 316: 1583-1589
  • 155 Panwar R, Hardie M, Bellomo R. et al. Conservative versus Liberal Oxygenation Targets for Mechanically Ventilated Patients. A Pilot Multicenter Randomized Controlled Trial. Am J Respir Crit Care Med 2016; 193: 43-51
  • 156 Hirase T, Ruff ES, Ratnani I. et al. Impact of Conservative Versus Conventional Oxygenation on Outcomes of Patients in Intensive Care Units: A Systematic Review and Meta-analysis. Cureus 2019; 11: e5662
  • 157 Schjørring OL, Klitgaard TL, Perner A. et al. Lower or Higher Oxygenation Targets for Acute Hypoxemic Respiratory Failure. N Engl J Med 2021; 384: 1301-1311
  • 158 Eastwood G, Bellomo R, Bailey M. et al. Arterial oxygen tension and mortality in mechanically ventilated patients. Intensive Care Med 2012; 38: 91-98
  • 159 Helmerhorst HJ, Schultz MJ, van der Voort PH. et al. Effectiveness and Clinical Outcomes of a Two-Step Implementation of Conservative Oxygenation Targets in Critically Ill Patients: A Before and After Trial. Crit Care Med 2016; 44: 554-563
  • 160 Palmer E, Post B, Klapaukh R. et al. The Association between Supraphysiologic Arterial Oxygen Levels and Mortality in Critically Ill Patients. A Multicenter Observational Cohort Study. Am J Respir Crit Care Med 2019; 200: 1373-1380
  • 161 de Jonge E, Peelen L, Keijzers PJ. et al. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care 2008; 12: R156
  • 162 Cumpstey AF, Oldman AH, Smith AF. et al. Oxygen targets in the intensive care unit during mechanical ventilation for acute respiratory distress syndrome: a rapid review. Cochrane Database Syst Rev 2020; 9: CD013708
  • 163 Severinghaus JW. Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol Respir Environ Exerc Physiol 1979; 46: 599-602
  • 164 Crane SD, Elliott MW, Gilligan P. et al. Randomised controlled comparison of continuous positive airways pressure, bilevel non-invasive ventilation, and standard treatment in emergency department patients with acute cardiogenic pulmonary oedema. Emerg Med J 2004; 21: 155-161
  • 165 Gray A, Goodacre S, Newby DE. et al. Noninvasive ventilation in acute cardiogenic pulmonary edema. N Engl J Med 2008; 359: 142-151
  • 166 Nava S, Carbone G, DiBattista N. et al. Noninvasive ventilation in cardiogenic pulmonary edema: a multicenter randomized trial. Am J Respir Crit Care Med 2003; 168: 1432-1437
  • 167 Lellouche F, L'Her E, Bouchard PA. et al. Automatic Oxygen Titration During Walking in Subjects With COPD: A Randomized Crossover Controlled Study. Respir Care 2016; 61: 1456-1464
  • 168 Hansen EF, Bech CS, Vestbo J. et al. Automatic oxygen titration with O2matic(R) to patients admitted with COVID-19 and hypoxemic respiratory failure. Eur Clin Respir J 2020; 7: 1833695
  • 169 Lellouche F, Bouchard PA, Roberge M. et al. Automated oxygen titration and weaning with FreeO2 in patients with acute exacerbation of COPD: a pilot randomized trial. Int J Chron Obstruct Pulmon Dis 2016; 11: 1983-1990
  • 170 Johannigman JA, Branson R, Lecroy D. et al. Autonomous control of inspired oxygen concentration during mechanical ventilation of the critically injured trauma patient. J Trauma 2009; 66: 386-392
  • 171 Chadha TS, Cohn MA. Noninvasive treatment of pneumothorax with oxygen inhalation. Respiration 1983; 44: 147-152
  • 172 Northfield TC. Oxygen therapy for spontaneous pneumothorax. Br Med J 1971; 4: 86-88
  • 173 Schnell J, Beer M, Eggeling S. et al. Management of Spontaneous Pneumothorax and Post-Interventional Pneumothorax: German S3 Guideline. Respiration 2019; 97: 370-402
  • 174 Brown SGA, Ball EL, Perrin K. et al. Conservative versus Interventional Treatment for Spontaneous Pneumothorax. N Engl J Med 2020; 382: 405-415
  • 175 Bellani G, Laffey JG, Pham T. et al. Noninvasive Ventilation of Patients with Acute Respiratory Distress Syndrome. Insights from the LUNG SAFE Study. Am J Respir Crit Care Med 2017; 195: 67-77
  • 176 Bethune DW, Collis JM. The evaluation of oxygen masks. A mechanical method. Anaesthesia 1967; 22: 43-54
  • 177 Berbenetz N, Wang Y, Brown J. et al. Non-invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema. Cochrane Database Syst Rev; 2019 4. CD005351
  • 178 Osadnik CR, Tee VS, Carson-Chahhoud KV. et al. Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev; 2017 7. CD004104
  • 179 Gupta D, Nath A, Agarwal R. et al. A Prospective Randomized Controlled Trial on the Efficacy of Noninvasive Ventilation in Severe Acute Asthma. Respiratory Care 2010; 55: 536-543
  • 180 Young AC, Wilson JW, Kotsimbos TC. et al. Randomised placebo controlled trial of non-invasive ventilation for hypercapnia in cystic fibrosis. Thorax 2008; 63: 72-77
  • 181 Westhoff M, Schonhofer B, Neumann P. et al. Noninvasive Mechanical Ventilation in Acute Respiratory Failure. Pneumologie 2015; 69: 719-756
  • 182 Doshi P, Whittle JS, Bublewicz M. et al. High-Velocity Nasal Insufflation in the Treatment of Respiratory Failure: A Randomized Clinical Trial. Ann Emerg Med 2018; 72: 73-83 e5
  • 183 Haywood ST, Whittle JS, Volakis LI. et al. HVNI vs NIPPV in the treatment of acute decompensated heart failure: Subgroup analysis of a multi-center trial in the ED. Am J Emerg Med 2019; 37: 2084-2090
  • 184 Hernandez G, Vaquero C, Gonzalez P. et al. Effect of Postextubation High-Flow Nasal Cannula vs Conventional Oxygen Therapy on Reintubation in Low-Risk Patients: A Randomized Clinical Trial. JAMA 2016; 315: 1354-1361
  • 185 Stéphan F, Barrucand B, Petit P. et al. High-Flow Nasal Oxygen vs Noninvasive Positive Airway Pressure in Hypoxemic Patients After Cardiothoracic Surgery. JAMA 2015; 313: 2331-2339
  • 186 Tan D, Walline JH, Ling B. et al. High-flow nasal cannula oxygen therapy versus non-invasive ventilation for chronic obstructive pulmonary disease patients after extubation: a multicenter, randomized controlled trial. Crit Care 2020; 24: 489
  • 187 Futier E, Paugam-Burtz C, Constantin JM. et al. The OPERA trial – comparison of early nasal high flow oxygen therapy with standard care for prevention of postoperative hypoxemia after abdominal surgery: study protocol for a multicenter randomized controlled trial. Trials 2013; 14: 341
  • 188 Papachatzakis Y, Nikolaidis PT, Kontogiannis S. et al. High-Flow Oxygen through Nasal Cannula vs. Non-Invasive Ventilation in Hypercapnic Respiratory Failure: A Randomized Clinical Trial. Int J Environ Res Public Health 2020; 17: 5994
  • 189 McKinstry S, Singer J, Baarsma JP. et al. Nasal high-flow therapy compared with non-invasive ventilation in COPD patients with chronic respiratory failure: A randomized controlled cross-over trial. Respirology 2019; 24: 1081-1087
  • 190 Ferreyro BL, Angriman F, Munshi L. et al. Association of Noninvasive Oxygenation Strategies With All-Cause Mortality in Adults With Acute Hypoxemic Respiratory Failure: A Systematic Review and Meta-analysis. JAMA 2020; 324: 57-67
  • 191 Zhang Y, Fang C, Dong BR. et al. Oxygen therapy for pneumonia in adults. Cochrane Database Syst Rev; 2012 CD006607
  • 192 Martin TJ, Hovis JD, Costantino JP. et al. A randomized, prospective evaluation of noninvasive ventilation for acute respiratory failure. Am J Respir Crit Care Med 2000; 161: 807-813
  • 193 Antonelli M, Conti G, Bufi M. et al. Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial. JAMA 2000; 283: 235-241
  • 194 Hilbert G, Gruson D, Vargas F. et al. Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates, fever, and acute respiratory failure. N Engl J Med 2001; 344: 481-487
  • 195 Squadrone V, Massaia M, Bruno B. et al. Early CPAP prevents evolution of acute lung injury in patients with hematologic malignancy. Intensive Care Med 2010; 36: 1666-1674
  • 196 Werdan K, Boeken U, Briegel MJ. et al. Short version of the 2nd edition of the German-Austrian S3 guidelines “Cardiogenic shock complicating myocardial infarction-Diagnosis, monitoring and treatment”. Anaesthesist 2021; 70: 42-70
  • 197 Ibanez B, James S, Agewall S. et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2018; 39: 119-177
  • 198 Cabello JB, Burls A, Emparanza JI. et al. Oxygen therapy for acute myocardial infarction. Cochrane Database Syst Rev; 2016 12. CD007160
  • 199 Rawles JM, Kenmure AC. Controlled trial of oxygen in uncomplicated myocardial infarction. Br Med J 1976; 1: 1121-1123
  • 200 James SK, Erlinge D, Herlitz J. et al. Effect of Oxygen Therapy on Cardiovascular Outcomes in Relation to Baseline Oxygen Saturation. JACC Cardiovasc Interv 2020; 13: 502-513
  • 201 Burls A, Emparanza JI, Quinn T. et al. Oxygen use in acute myocardial infarction: an online survey of health professionalsʼ practice and beliefs. Emerg Med J 2010; 27: 283-286
  • 202 Wilson AT, Channer KS. Hypoxaemia and supplemental oxygen therapy in the first 24 hours after myocardial infarction: the role of pulse oximetry. J R Coll Physicians Lond 1997; 31: 657-661
  • 203 Ukholkina GB, Kostianov I, Kuchkina NV. et al. Effect of oxygenotherapy used in combination with reperfusion in patients with acute myocardial infarction. Kardiologiia 2005; 45: 59
  • 204 Khoshnood A, Akbarzadeh M, Carlsson M. et al. Effect of oxygen therapy on chest pain in patients with ST elevation myocardial infarction: results from the randomized SOCCER trial. Scand Cardiovasc J 2018; 52: 69-73
  • 205 Heidari FRK, Daryoush I, Rezaee K. The effect of oxygen on the outcomes of non-ST-segment elevation acute coronary syndromes. IJC Metabolic & Endocrine 2017; 14: 67-71
  • 206 Sepehrvand N, Alemayehu W, Rowe BH. et al. High vs. low oxygen therapy in patients with acute heart failure: HiLo-HF pilot trial. ESC Heart Fail 2019; 6: 667-677
  • 207 Mader FMSR. Schlaganfall S3-Leitlinie [AWMF National German S3 Guideline]. 2020 Available from (updated 1.2.2020) https://www.awmf.org/uploads/tx_szleitlinien/053-011l_S3_Schlaganfall_2021-03.pdf
  • 208 Powers WJ, Rabinstein AA, Ackerson T. et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019; 50: e344-e418
  • 209 Ronning OM, Guldvog B. Should stroke victims routinely receive supplemental oxygen? A quasi-randomized controlled trial. Stroke 1999; 30: 2033-2037
  • 210 Singhal AB, Benner T, Roccatagliata L. et al. A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke 2005; 36: 797-802
  • 211 Padma MV, Bhasin A, Bhatia R. et al. Normobaric oxygen therapy in acute ischemic stroke: A pilot study in Indian patients. Ann Indian Acad Neurol 2010; 13: 284-288
  • 212 Mazdeh M, Taher A, Torabian S. et al. Effects of Normobaric Hyperoxia in Severe Acute Stroke: a Randomized Controlled Clinical Trial Study. Acta Med Iran 2015; 53: 676-680
  • 213 Shi S, Qi Z, Ma Q. et al. Normobaric Hyperoxia Reduces Blood Occludin Fragments in Rats and Patients With Acute Ischemic Stroke. Stroke 2017; 48: 2848-2854
  • 214 Ding J, Zhou D, Sui M. et al. The effect of normobaric oxygen in patients with acute stroke: a systematic review and meta-analysis. Neurol Res 2018; 40: 433-444
  • 215 Davis DP, Meade W, Sise MJ. et al. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. J Neurotrauma 2009; 26: 2217-2223
  • 216 Okonkwo DO, Shutter LA, Moore C. et al. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial. Crit Care Med 2017; 45: 1907-1914
  • 217 Polytrauma Guideline Update G. Level 3 guideline on the treatment of patients with severe/multiple injuries: AWMF Register-Nr. 012/019. Eur J Trauma Emerg Surg 2018; 44 (Suppl. 01) 3-271
  • 218 Robba C, Poole D, McNett M. et al. Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus. Intensive Care Med 2020; 46: 2397-2410
  • 219 Rincon F, Kang J, Maltenfort M. et al. Association between hyperoxia and mortality after stroke: a multicenter cohort study. Crit Care Med 2014; 42: 387-396
  • 220 Jeon SB, Choi HA, Badjatia N. et al. Hyperoxia may be related to delayed cerebral ischemia and poor outcome after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2014; 85: 1301-1307
  • 221 Heyboer 3rd M, Jennings S, Grant WD. et al. Seizure incidence by treatment pressure in patients undergoing hyperbaric oxygen therapy. Undersea Hyperb Med 2014; 41: 379-385
  • 222 Bennett MH, Weibel S, Wasiak J. et al. Hyperbaric oxygen therapy for acute ischaemic stroke. Cochrane Database Syst Rev; 2014 CD004954
  • 223 Bartek Jr J, Jakola AS, Skyrman S. et al. Hyperbaric oxygen therapy in spontaneous brain abscess patients: a population-based comparative cohort study. Acta Neurochir (Wien) 2016; 158: 1259-1267
  • 224 National Heart L, Blood I, National Asthma E. et al NAEPP expert panel report. Managing asthma during pregnancy: recommendations for pharmacologic treatment-2004 update. J Allergy Clin Immunol 2005; 115: 34-46
  • 225 Thorp JA, Trobough T, Evans R. et al. The effect of maternal oxygen administration during the second stage of labor on umbilical cord blood gas values: a randomized controlled prospective trial. Am J Obstet Gynecol 1995; 172: 465-474
  • 226 Nesterenko TH, Acun C, Mohamed MA. et al. Is it a safe practice to administer oxygen during uncomplicated delivery: a randomized controlled trial?. Early Hum Dev 2012; 88: 677-681
  • 227 Chuai Y, Jiang W, Xu X. et al. Maternal oxygen exposure may not change umbilical cord venous partial pressure of oxygen: non-random, paired venous and arterial samples from a randomised controlled trial. BMC Pregnancy Childbirth 2020; 20: 510
  • 228 Raghuraman N, Wan L, Temming LA. et al. Effect of Oxygen vs Room Air on Intrauterine Fetal Resuscitation: A Randomized Noninferiority Clinical Trial. JAMA Pediatr 2018; 172: 818-823
  • 229 Buckley NA, Juurlink DN, Isbister G. et al. Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev; 2011 CD002041
  • 230 Juurlink DN, Stanbrook MB, McGuigan MA. Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev; 2000 CD002041
  • 231 Lin CH, Su WH, Chen YC. et al. Treatment with normobaric or hyperbaric oxygen and its effect on neuropsychometric dysfunction after carbon monoxide poisoning: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2018; 97: e12456
  • 232 Wang W, Cheng J, Zhang J. et al. Effect of Hyperbaric Oxygen on Neurologic Sequelae and All-Cause Mortality in Patients with Carbon Monoxide Poisoning: A Meta-Analysis of Randomized Controlled Trials. Med Sci Monit 2019; 25: 7684-7693
  • 233 Rose JJ, Wang L, Xu Q. et al. Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy. Am J Respir Crit Care Med 2017; 195: 596-606
  • 234 Tomruk O, Karaman K, Erdur B. et al. A New Promising Treatment Strategy for Carbon Monoxide Poisoning: High Flow Nasal Cannula Oxygen Therapy. Med Sci Monit 2019; 25: 605-609
  • 235 Eskes AM, Ubbink DT, Lubbers MJ. et al. Hyperbaric oxygen therapy: solution for difficult to heal acute wounds? Systematic review. World J Surg 2011; 35: 535-542
  • 236 Bennett MH, Feldmeier J, Hampson NB. et al. Hyperbaric oxygen therapy for late radiation tissue injury. Cochrane Database Syst Rev; 2016 4. CD005005
  • 237 Bennett MH, Kertesz T, Perleth M. et al. Hyperbaric oxygen for idiopathic sudden sensorineural hearing loss and tinnitus. Cochrane Database Syst Rev; 2012 10. CD004739
  • 238 Kranke P, Bennett MH, Martyn-St JamesM. et al. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev; 2015 CD004123
  • 239 Fauno Thrane J, Ovesen T. Scarce evidence of efficacy of hyperbaric oxygen therapy in necrotizing soft tissue infection: a systematic review. Infect Dis (Lond) 2019; 51: 485-492
  • 240 Holmberg MJ, Nicholson T, Nolan JP. et al. Oxygenation and ventilation targets after cardiac arrest: A systematic review and meta-analysis. Resuscitation 2020; 152: 107-115
  • 241 Wang CH, Chang WT, Huang CH. et al. The effect of hyperoxia on survival following adult cardiac arrest: a systematic review and meta-analysis of observational studies. Resuscitation 2014; 85: 1142-1148
  • 242 Berg KM, Soar J, Andersen LW. et al. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2020; 142: S92-S139
  • 243 Breuer F, Pommerenke C, Lamers A. et al. Generaldelegation von heilkundlichen Maßnahmen an Notfallsanitäter – Umsetzung im Land Berlin. Notfall + Rettungsmedizin 2020; 24: 52-62
  • 244 Thompson J, Petrie DA, Ackroyd-Stolarz S. et al. Out-of-hospital continuous positive airway pressure ventilation versus usual care in acute respiratory failure: a randomized controlled trial. Ann Emerg Med 2008; 52: 232-241, 41 e1
  • 245 Plaisance P, Pirracchio R, Berton C. et al. A randomized study of out-of-hospital continuous positive airway pressure for acute cardiogenic pulmonary oedema: physiological and clinical effects. Eur Heart J 2007; 28: 2895-2901
  • 246 Ducros L, Logeart D, Vicaut E. et al. CPAP for acute cardiogenic pulmonary oedema from out-of-hospital to cardiac intensive care unit: a randomised multicentre study. Intensive Care Med 2011; 37: 1501-1509
  • 247 Bray JE, Hein C, Smith K. et al. Oxygen titration after resuscitation from out-of-hospital cardiac arrest: A multi-centre, randomised controlled pilot study (the EXACT pilot trial). Resuscitation 2018; 128: 211-215
  • 248 Thomas M, Voss S, Benger J. et al. Cluster randomised comparison of the effectiveness of 100% oxygen versus titrated oxygen in patients with a sustained return of spontaneous circulation following out of hospital cardiac arrest: a feasibility study. PROXY: post ROSC OXYgenation study. BMC Emerg Med 2019; 19: 16
  • 249 Young P, Bailey M, Bellomo R. et al. HyperOxic Therapy OR NormOxic Therapy after out-of-hospital cardiac arrest (HOT OR NOT): a randomised controlled feasibility trial. Resuscitation 2014; 85: 1686-1691
  • 250 Young PJ, Bailey M, Bellomo R. et al. Conservative or liberal oxygen therapy in adults after cardiac arrest: An individual-level patient data meta-analysis of randomised controlled trials. Resuscitation 2020; 157: 15-22
  • 251 Alhazzani W, Moller MH, Arabi YM. et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med 2020; 46: 854-887
  • 252 Tobin MJ, Laghi F, Jubran A. Why COVID-19 Silent Hypoxemia Is Baffling to Physicians. Am J Respir Crit Care Med 2020; 202: 356-360
  • 253 Shenoy N, Luchtel R, Gulani P. Considerations for target oxygen saturation in COVID-19 patients: are we under-shooting?. BMC Med 2020; 18: 260
  • 254 Grensemann JKS. Nichtinvasive Beatmung und Ansteckungsrisiko – Aerosole von COVID-19-Patienten. Dtsch Arztebl 2020; 117: A-1498/B-286
  • 255 Cohen AS, Burns B, Goadsby PJ. High-flow oxygen for treatment of cluster headache: a randomized trial. JAMA 2009; 302: 2451-2457
  • 256 Bennett MH, French C, Schnabel A. et al. Normobaric and hyperbaric oxygen therapy for the treatment and prevention of migraine and cluster headache. Cochrane Database Syst Rev. 2015 CD005219
  • 257 Kudrow L. Response of cluster headache attacks to oxygen inhalation. Headache 1981; 21: 1-4
  • 258 Riphaus A, Wehrmann T, Hausmann J. et al. S3-guidelines “Sedation in gastrointestinal endoscopy” 2014 (AWMF register no. 021/014). Z Gastroenterol 2015; 53: E1
  • 259 Lin Y, Zhang X, Li L. et al. High-flow nasal cannula oxygen therapy and hypoxia during gastroscopy with propofol sedation: a randomized multicenter clinical trial. Gastrointest Endosc 2019; 90: 591-601
  • 260 Ishiwata T, Tsushima K, Terada J. et al. Efficacy of End-Tidal Capnography Monitoring during Flexible Bronchoscopy in Nonintubated Patients under Sedation: A Randomized Controlled Study. Respiration 2018; 96: 355-362
  • 261 Klare P, Reiter J, Meining A. et al. Capnographic monitoring of midazolam and propofol sedation during ERCP: a randomized controlled study (EndoBreath Study). Endoscopy 2016; 48: 42-50
  • 262 Deitch K, Miner J, Chudnofsky CR. et al. Does end tidal CO2 monitoring during emergency department procedural sedation and analgesia with propofol decrease the incidence of hypoxic events? A randomized, controlled trial. Ann Emerg Med 2010; 55: 258-264
  • 263 Friedrich-Rust M, Welte M, Welte C. et al. Capnographic monitoring of propofol-based sedation during colonoscopy. Endoscopy 2014; 46: 236-244
  • 264 Douglas N, Ng I, Nazeem F. et al. A randomised controlled trial comparing high-flow nasal oxygen with standard management for conscious sedation during bronchoscopy. Anaesthesia 2018; 73: 169-176
  • 265 Rex DK, Deenadayalu VP, Eid E. et al. Endoscopist-directed administration of propofol: a worldwide safety experience. Gastroenterology 2009; 137: 1229-1237 quiz 518-519
  • 266 Arrowsmith JB, Gerstman BB, Fleischer DE. et al. Results from the American Society for Gastrointestinal Endoscopy/U.S. Food and Drug Administration collaborative study on complication rates and drug use during gastrointestinal endoscopy. Gastrointest Endosc 1991; 37: 421-427
  • 267 Bauer TT, Torres A, Ewig S. et al. Effects of bronchoalveolar lavage volume on arterial oxygenation in mechanically ventilated patients with pneumonia. Intensive Care Med 2001; 27: 384-393
  • 268 Jones AM, O'Driscoll R. Do all patients require supplemental oxygen during flexible bronchoscopy?. Chest 2001; 119: 1906-1909
  • 269 Rozario L, Sloper D, Sheridan MJ. Supplemental oxygen during moderate sedation and the occurrence of clinically significant desaturation during endoscopic procedures. Gastroenterol Nurs 2008; 31: 281-285
  • 270 Wang CY, Ling LC, Cardosa MS. et al. Hypoxia during upper gastrointestinal endoscopy with and without sedation and the effect of pre-oxygenation on oxygen saturation. Anaesthesia 2000; 55: 654-658
  • 271 Crantock L, Cowen AE, Ward M. et al. Supplemental low flow oxygen prevents hypoxia during endoscopic cholangiopancreatography. Gastrointestinal Endoscopy 1992; 38: 418-420
  • 272 Kumar P. Supplemental oxygen during sedation for gastrointestinal endoscopy: clinical pearls and pitfalls. Gastroenterol Nurs 2008; 31: 441-442
  • 273 Waugh JB, Epps CA, Khodneva YA. Capnography enhances surveillance of respiratory events during procedural sedation: a meta-analysis. J Clin Anesth 2011; 23: 189-196
  • 274 Askar H, Misch J, Chen Z. et al. Capnography monitoring in procedural intravenous sedation: a systematic review and meta-analysis. Clin Oral Investig 2020; 24: 3761-3770
  • 275 Corley A, Rickard CM, Aitken LM. et al. High-flow nasal cannulae for respiratory support in adult intensive care patients. Cochrane Database Syst Rev 2017; 5: CD010172
  • 276 Marjanovic N, Guenezan J, Frat JP. et al. High-flow nasal cannula oxygen therapy in acute respiratory failure at Emergency Departments: A systematic review. Am J Emerg Med 2020; 38: 1508-1514
  • 277 Ou X, Hua Y, Liu J. et al. Effect of high-flow nasal cannula oxygen therapy in adults with acute hypoxemic respiratory failure: a meta-analysis of randomized controlled trials. CMAJ 2017; 189: E260-E267
  • 278 Azoulay E, Lemiale V, Mokart D. et al. Effect of High-Flow Nasal Oxygen vs Standard Oxygen on 28-Day Mortality in Immunocompromised Patients With Acute Respiratory Failure: The HIGH Randomized Clinical Trial. JAMA 2018; 320: 2099-2107
  • 279 Jones PG, Kamona S, Doran O. et al. Randomized Controlled Trial of Humidified High-Flow Nasal Oxygen for Acute Respiratory Distress in the Emergency Department: The HOT-ER Study. Respir Care 2016; 61: 291-299
  • 280 Calligaro GL, Lalla U, Audley G. et al. The utility of high-flow nasal oxygen for severe COVID-19 pneumonia in a resource-constrained setting: A multi-centre prospective observational study. EClinicalMedicine 2020; 28: 100570
  • 281 Wen Z, Wang W, Zhang H. et al. Is humidified better than non-humidified low-flow oxygen therapy? A systematic review and meta-analysis. J Adv Nurs 2017; 73: 2522-2533
  • 282 Poiroux L, Piquilloud L, Seegers V. et al. Effect on comfort of administering bubble-humidified or dry oxygen: the Oxyrea non-inferiority randomized study. Ann Intensive Care 2018; 8: 126
  • 283 Fildissis G, Katostaras T, Moles A. et al. Oxygenation equilibration time after alteration of inspired oxygen in critically ill patients. Heart Lung 2010; 39: 147-152
  • 284 Weinreich UM, Thomsen LP, Hansen A. et al. Time to steady state after changes in FIO(2) in patients with COPD. COPD 2013; 10: 405-410
  • 285 Khoukaz G, Gross NJ. Effects of salmeterol on arterial blood gases in patients with stable chronic obstructive pulmonary disease. Comparison with albuterol and ipratropium. Am J Respir Crit Care Med 1999; 160: 1028-1030
  • 286 Gruber P, Kwiatkowski T, Silverman R. et al. Time to equilibration of oxygen saturation using pulse oximetry. Acad Emerg Med 1995; 2: 810-815
  • 287 Kagle DM, Alexander CM, Berko RS. et al. Evaluation of the Ohmeda 3700 pulse oximeter: steady-state and transient response characteristics. Anesthesiology 1987; 66: 376-380
  • 288 Sherter CB, Jabbour SM, Kovnat DM. et al. Prolonged rate of decay of arterial PO2 following oxygen breathing in chronic airways obstruction. Chest 1975; 67: 259-261
  • 289 Howe 3rd JP, Alpert JS, Rickman FD. et al. Return of arterial PO2 values to baseline after supplemental oxygen in patients with cardiac disease. Chest 1975; 67: 256-258
  • 290 Sasse SA, Jaffe MB, Chen PA. et al. Arterial oxygenation time after an FIO2 increase in mechanically ventilated patients. Am J Respir Crit Care Med 1995; 152: 148-152
  • 291 Wilkins CJ, Moores M, Hanning CD. Comparison of pulse oximeters: effects of vasoconstriction and venous engorgement. Br J Anaesth 1989; 62: 439-244
  • 292 Kane B, Turkington PM, Howard LS. et al. Rebound hypoxaemia after administration of oxygen in an acute exacerbation of chronic obstructive pulmonary disease. BMJ 2011; 342: d1557
  • 293 Rudolf M, Turner JA, Harrison BD. et al. Changes in arterial blood gases during and after a period of oxygen breathing in patients with chronic hypercapnic respiratory failure and in patients with asthma. Clin Sci (Lond) 1979; 57: 389-396
  • 294 Pennisi MA, Bello G, Congedo MT. et al. Early nasal high-flow versus Venturi mask oxygen therapy after lung resection: a randomized trial. Crit Care 2019; 23: 68
  • 295 Dobbe ASM, Stolmeijer R, Ter Maaten JC. et al. Titration of oxygen therapy in critically ill emergency department patients: a feasibility study. BMC Emerg Med 2018; 18: 17
  • 296 Haidl P, Jany B, Geiseler J. et al. Guideline for Long-Term Oxygen Therapy – S2k-Guideline Published by the German Respiratory Society. Pneumologie 2020; 74: 813-841
  • 297 Mayer G, Arzt M, Braumann B. et al. German S3 Guideline Nonrestorative Sleep/Sleep Disorders, chapter “Sleep-Related Breathing Disorders in Adults,” short version: German Sleep Society (Deutsche Gesellschaft fur Schlafforschung und Schlafmedizin, DGSM). Somnologie (Berl) 2017; 21: 290-301
  • 298 Long-Term Oxygen Treatment Trial Research Group. Albert RK, Au DH, Blackford AL. et al. A Randomized Trial of Long-Term Oxygen for COPD with Moderate Desaturation. N Engl J Med 2016; 375: 1617-1627
  • 299 Rostin P, Teja BJ, Friedrich S. et al. The association of early postoperative desaturation in the operating theatre with hospital discharge to a skilled nursing or long-term care facility. Anaesthesia 2019; 74: 457-467
  • 300 Oba Y, Salzman GA, Willsie SK. Reevaluation of continuous oxygen therapy after initial prescription in patients with chronic obstructive pulmonary disease. Respir Care 2000; 45: 401-406
  • 301 Levi-Valensi P, Weitzenblum E, Pedinielli JL. et al. Three-month follow-up of arterial blood gas determinations in candidates for long-term oxygen therapy. A multicentric study. Am Rev Respir Dis 1986; 133: 547-551
  • 302 Ringbaek TJ, Lange P. Trends in long-term oxygen therapy for COPD in Denmark from 2001 to 2010. Respir Med 2014; 108: 511-516
  • 303 OʼDonnell C, Davis P, McDonnell T. Oxygen Therapy in Ireland: A Nationwide Review of Delivery, Monitoring and Cost Implications. Ir Med J 2019; 112: 933