RSS-Feed abonnieren
DOI: 10.1055/a-1554-2866
New Guaianolide Sesquiterpene Lactones and Other Constituents from Pyrethrum pulchrum
Abstract
Pyrethrum pulchrum is a rare Mongolian plant species that has been traditionally used as an ingredient in various remedies. Bioactivity-guided fractionation performed on the methanol extract of its aerial parts led to the isolation of 2 previously undescribed guaianolide-type sesquiterpene lactones, namely 1β,10β-epoxy-8α-hydroxyguaia-3,11(13)-dien-6,12-olide (1) and 1,8,10-trihydroxyguaia-3,11(13)-dien-6,12-olide (2), along with the isolation or chromatographic identification of 11 compounds, arglabin (3), 3β-hydroxycostunolide (4), isocostic acid (5), (E)-9-(2-thienyl)-6-nonen-8-yn-3-ol (6), (Z)-9-(2-thienyl)-6-nonen-8-yn-3-ol (7), N 1,N 5,N 10,N 14-tetra-p-coumaroyl spermine (8), chlorogenic acid (9), 3,5-di-O-caffeoylquinic acid (10), 3,5-di-O-caffeoylquinic acid methyl ester (11), 3,4-di-O-caffeoylquinic acid (12), and tryptophan (13). Their structures were assigned based on spectroscopic and spectrometric data. The antimicrobial, antiproliferative and cytotoxic activities of selected compounds were evaluated. The new compounds showed weak to moderate antimicrobial activity. Arglabin (3), the major sesquiterpene lactone found in the methanol extract of P. pulchrum, exhibited the highest activity against human cancer lines, while compound 1 also possesses significant antiproliferative activity against leukemia cells.
Key words
Pyrethrum pulchrum - Asteraceae - sesquiterpene lactone - antiproliferative effect - cytotoxicity - leukemia cell linesSupporting Information
- Supporting Information
Spectroscopic data of known compounds, a list of all isolated compounds (Table 1S); bioactivity data of the plant extract, main fractions and compounds 1 and 2 (Table 2S and 3S), force field optimized structure and CD spectra of compound 1, NMR and mass spectra of compounds 1 – 13 (Fig. 1S–62S), and concentration-response curves of antiproliferative and cytotoxic effects of compounds 1, 3, and 4 (Fig. 63S) are available as Supporting Information.
Publikationsverlauf
Eingereicht: 16. September 2020
Angenommen nach Revision: 14. Juli 2021
Artikel online veröffentlicht:
05. August 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Urgamal M, Oyuntsetseg B, Nyambayar D, Dulamsuren C. Conspectus of the vascular Plants of Mongolia. Ulaanbaatar: Admon Press; 2014: 217-218
- 2 The Plant List (2013). Version 1.1. Accessed January 1, 2013 at: http://www.theplantlist.org/
- 3 Seaman FC. Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot Rev 1982; 48: 121-595
- 4 Thomas JS. Structure activity relationships of sesquiterpene lactones. Stud Nat Prod Chem 2006; 33: 309-392
- 5 Ivanescu B, Miron A, Corciova A. Sesquiterpene lactones from Artemisia genus: biological activities and methods of analysis. J Anal Methods Chem 2015; 2015: 1-21
- 6 Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Sesquiterpenoids lactones: Benefits to plants and people. Int J Mol Sci 2013; 14: 12780-12805
- 7 Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N. What made sesquiterpene lactones reach cancer clinical trials?. Drug Discov Today 2010; 15: 668-678
- 8 Lone SH, Bhat KA, Khuroo MA. Arglabin: From isolation to antitumor evaluation. Chem Biol Interact 2015; 240: 180-198
- 9 Boldsaikhan B, Nansalmaa K, Tsembel D. Study of the repeated factors of medicaments of 4000 prescriptions of traditional medicine determined from computer. Proceeding Mong Acad Sci 1993; 4: 35-38
- 10 Khaidav T. The collected Works of Ts. Khaidav. Bot 4. Ulaanbaatar: Soyombo Printing; 2013: 339
- 11 Urgamal M. Species Catalogue of rare and threatened vascular Plants of Mongolia. Ulaanbaatar, Mongolia: Bembi San Press; 2018: 128
- 12 Erdenetsogt U, Gotov C, Voigt K, Bartram S, Boland W, Dagvadorj E. Chemical composition and antimicrobial activity of essential oil from Pyrethrum pulchrum Ledeb. Mong J Chem 2018; 19: 38-43
- 13 Erdenetsogt U, Nadmid S, Paulus C, Chanagsuren G, Dolgor E, Gotov C, Dahse HM, Luzhetskyy A, Dagvadorj E. Bioactive flavonoids from plant extract of Pyrethrum pulchrum and its acute toxicity. Nat Prod Res 2020;
- 14 Wong H, Brown GD. Dimeric guaianolides and a fulvenoguaianolide from Artemisia myriantha. J Nat Prod 2002; 7: 481-486
- 15 Zdero C, Bohlmann F. Glaucolides, fulvenoguaianolides and other sesquiterpene lactones from Pentzia species. Phytochemistry 1990; 29: 189-194
- 16 Gutierrez AN, Sigstad EE, Catalan CAN, Gutierrez AB, Herz W. Guaianolides from Kaunia lasiophthalma . Phytochemistry 1990; 29: 1219-1225
- 17 Jeong WB. Asymmetric methodologies for the construction of 5,7,5- and 6,6,6-tricyclic sesquiterpene lactones towards the synthesis of Arglabin [Dissertation]. Germany: University of Regensburg; 2006
- 18 Ibrahim SRM, Abdallah HM. Naturally occurring thiophenes: isolation, purification, structural elucidation and evaluation of bioactivities. Phytochem Rev 2016; 15: 197-220
- 19 Bohlmann F, Kleine K, Arndt C. Die Inhaltsstoffe aus Anthemis saguamica Sosn. Chem Ber 1966; 99: 1642-1647
- 20 Adekenov SM, Mukhametzhanov MN, Kagarlitskii AD, Kupriyanov AN. Arglabin–a new sesquiterpene lactone from Artemisia glabella . Chem Nat Compd 1982; 15: 623-662
- 21 Fischedick JT, Standiford M, Johnson DA, De Vos RH, Todorović S, Banjanac T, Verpoorte R, Johnson JA. Activation of antioxidant response element in mouse primary cortical cultures with sesquiterpene lactones isolated from Tanacetum parthenium . Planta Med 2012; 78: 1725-1730
- 22 Zaki M, Tebbaa M, Hiebel MA, Benharref A, Akssira M, Berteina-Raboin S. Acid-promoted opening of 4,5- and 3,4-epoxy eudesmane scaffolds from α-isocostic acid. Tetrahedron 2015; 71: 2035-2042
- 23 Park SB, Song K, Kim YS, Korea S, Korea S. Tetra-cis/trans-coumaroyl polyamines as NK1 receptor antagonists from Matricaria chamomilla . Planta Med 2017; 4: 43-51
- 24 Yamamoto A, Nakamura K, Furukawa K, Konishi Y, Ogino T, Higashiura K, Yago H, Okamoto K, Otsuka M. A new nonpeptide tachykinin NK1 receptor antagonist isolated from the plants of Compositae. Chem Pharm Bull (Tokyo) 2002; 50: 47-52
- 25 Ncube EN, Mhlongo MI, Piater LA, Steenkamp PA, Dubery IA, Madala NE. Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method. Chem Cent J 2014; 8: 1-10
- 26 Chang WY, Chen CY, Hsieh PW, Hwang TL, Chen YL, Chong KY, Yang HW, Yu HP, Chang YW, Fang JY. Ilex kaushue and its bioactive component 3,5-dicaffeoylquinic acid protected mice from lipopolysaccharide-induced acute lung injury. Sci Rep 2016; 6: 1-12
- 27 Clifford MN, Knight S, Kuhnert N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J Agric Food Chem 2005; 53: 3821-3832
- 28 Csuk R, Heinold A, Siewert B, Schwarz S, Barthel A, Kluge R, Ströhl D. Synthesis and biological evaluation of antitumor-active arglabin derivatives. Arch Pharm (Weinheim) 2012; 345: 215-222
- 29 Adekenov SM. Chemical modification of arglabin and biological activity of its new derivatives. Fitoterapia 2016; 110: 196-205
- 30 Adekenov SM. Pharmaceutical compositions containing arglabin and arglabin derivatives. PCT Patent WO9848789A1, 1998
- 31 Zhang Q, Lu Y, Ding Y, Zhai J, Ji Q, Ma W, Yang M, Fan H, Long J, Tong Z, Shi Y, Jia Y, Han B, Zhang W, Qiu C, Ma X, Li Q, Shi Q, Zhang H, Li D, Zhang J, Lin J, Li LY, Gao Y, Chen Y. Guaianolide sesquiterpene lactones, a source to discover agents that selectively inhibit acute myelogenous leukemia stem and progenitor cells. J Med Chem 2012; 55: 8757-8769
- 32 Zhangabylov NS, Dederer LY, Gorbacheva LB, Vasilʼeva SV, Terekhov AS, Adekenov SM. Sesquiterpene lactone arglabin influences DNA synthesis in P388 leukemia cell in vivo. Pharm Chem J 2004; 38: 651-653
- 33 Shaikenov TE, Adekenov SM, Belyaev NN, Zakiryanova GK. Mechanism of Action of the Sesquiterpene from Artemisia glabella ‘Arglabin’ in transformed Tumor Cells. In: Arglabin. Its Structure, Properties and Usage. Virginia: Economy Printing, Portsmouth; 1997: 21-31
- 34 Odontuya G, Banzragchgarav O, Murata T, Batkhuu J, Sasaki K, Yoshizaki F. Antibacterially active phenolic lipid derivatives from Comarum salesovianum (Steph.) Aschers. et Gr. Phytochem Lett 2015; 13: 360-364
- 35 Paulus C, Rebet Y, Tokovenko B, Nadmid S, Terekhova LP, Zahler S, Kalinowski J, Luzhetskyy A. New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. Sci Rep 2017; 7: 1-11
- 36 Krieg R, Jortzik E, Goetz AA, Blandin S, Wittlin S, Elhabiri M, Rahbari M, Nuryyeva S, Voigt K, Dahse HM, Brakhage A, Beckmann S, Quack T, Grevelding CG, Pinkerton AB, Schönecker B, Burrows J, Davioud-Charvet E, Rahlfs S, Becker K. Arylmethylamino steroids as antiparasitic agents. Nat Commun 2017; 8: 14478
- 37 Krauth F, Dahse HM, Rüttinger HH, Frohberg P. Synthesis and characterization of novel 1,2,4-triazine derivatives with antiproliferative activity. Bioorganic Med Chem 2010; 18: 1816-1821