Subscribe to RSS
DOI: 10.1055/a-1554-5663
Comparison of the Thickness of the Fiber Layer of the Retinal Nerves in Spectral Domain Optical Coherence Tomography in Normal Eyes Older Than 40 Years
Vergleich der Dicke der Netzhautnervenfaserschicht bei der optischen Kohärenztomografie im Spektralbereich bei normalen Augen, die älter als 40 Jahre sindAbstract
Purpose To compare measurements of the thickness of the retinal nerve fibre layer (RNFL) and assess the agreement between three different devices for spectral domain optical coherence tomography.
Material and Methods The RNFL thickness of both eyes of 23 normal subjects older than 40 years was measured using Canon HS100, Topcon Maestro, and NIDEK RS-3000 devices. Both eyes of each subject were scanned in random order. All scans were completed on the same day in the morning. The average and four quadrants (superior, inferior, nasal, and temporal) of RNFL thickness were measured. To determine the differences in RNFL thickness, analysis of variance for repeated measurements was performed. A Bland-Altman plot was plotted, and coefficients of determination were calculated.
Results A total of 46 eyes of 23 subjects were enrolled in this study. The average RNFL thickness as determined by the three OCT devices was correlated (p < 0.001), but differed significantly between the three devices, as most were quadrant measurements. The mean average RNFL thickness was 98.5 ± 6.6 µm as measured by Canon HS100, 108.5 ± 8.8 µm as measured by Topcon Maestro, and 104.9 ± 9.0 µm as measured by NIDEK RS-3000. Topcon Maestro showed the highest average RNFL thickness value. Bland-Altman plots revealed considerable agreement among the three devices, except for the inferior quadrants between Topcon Maestro and NIDEK RS-3000 measurements. All three devices reveal considerable coefficients of determination values for mean RNFL thickness (0.917 – 0.127).
Conclusion Although the peripapillary RNFL thickness measurements taken with Canon HS100, Topcon Maestro, and NIDEK RS-3000 were in good agreement, they were not interchangeable in clinical practice, as the values differed significantly.
Zusammenfassung
Zweck Vergleich der Dickenmessungen der retinalen Nervenfaserschicht (RNFL) und Bewertung der Übereinstimmung zwischen 3 verschiedenen optischen Kohärenztomografiegeräten im Spektralbereich.
Material und Methoden Die RNFL-Dicke beider Augen von 23 gesunden Probanden war älter als 40 Jahre, gemessen mit Canon-HS100-, Topcon-Maestro- und NIDEK-RS-3000-Geräten. Beide Augen jedes Probanden wurden in zufälliger Reihenfolge gescannt. Alle Scans wurden am selben Tag am Morgen abgeschlossen. Die durchschnittliche RNFL-Dicke und die 4 Quadranten (superior, inferior, nasal und temporal) der RNFL-Dicke wurden gemessen. Um die Unterschiede in der RNFL-Dicke zu bestimmen, wurde eine Varianzanalyse für wiederholte Messungen durchgeführt. Ein Bland-Altman-Plot wurde grafisch dargestellt und die Bestimmungskoeffizienten wurden berechnet.
Ergebnisse Insgesamt 46 Augen von 23 Probanden wurden in diese Studie eingeschlossen. Die durchschnittliche RNFL-Dicke, die von den 3 OCT-Geräten bestimmt wurde, korrelierte (p < 0,001), unterschied sich jedoch signifikant zwischen den 3 Geräten, da die meisten Quadrantenmessungen waren. Die durchschnittliche RNFL-Dicke betrug 98,5 ± 6,6 µm, gemessen mit Canon HS100, 108,5 ± 8,8 µm, gemessen mit Topcon Maestro, und 104,9 ± 9,0 µm, gemessen mit NIDEK RS-3000. Topcon Maestro zeigte den höchsten durchschnittlichen RNFL-Dickenwert. Bland-Altman-Plots zeigten eine beträchtliche Übereinstimmung zwischen den 3 Geräten mit Ausnahme der unteren Quadranten zwischen Topcon-Maestro- und NIDEK-RS-3000-Messungen. Alle 3 Geräte zeigen beachtliche Bestimmtheitsmaße für die mittlere RNFL-Dicke (0,917 – 0,127).
Schlussfolgerung Die peripapillären RNFL-Dickenmessungen mit Canon HS100, Topcon Maestro und NIDEK RS-3000 stimmten zwar gut überein, sind aber nicht für eine Austauschbarkeit in der klinischen Praxis geeignet, da ein signifikanter Unterschied der Werte besteht.
Schlüsselwörter
Netzhautnervenfaserschicht - optische Kohärenztomografie mit spektraler Domäne - ÜbereinstimmungPublication History
Received: 08 June 2021
Accepted: 05 July 2021
Article published online:
15 September 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Tham YC, Li X, Wong TY. et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014; 121: 2081-2090
- 2 Wong E, Yoshioka N, Kalloniatis M. et al. Cirrus HD-OCT short-term repeatability of clinical retinal nerve fiber layer measurements. Optom Vis Sci 2015; 92: 83-88
- 3 Simavli H, Que CJ, Akduman M. et al. Diagnostic capability of peripapillary retinal thickness in glaucoma using 3D volume scans. Am J Ophthalmol 2015; 159: 545-556
- 4 Sung KR, Na JH, Lee Y. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography. J Glaucoma 2012; 21: 498-504
- 5 Pierro L, Gagliardi M, Iuliano L. et al. Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments. Invest Ophthalmol Vis Sci 2012; 53: 5912-5920
- 6 Langenegger SJ, Funk J, Toteberg-Harms M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci 2011; 52: 3338-3344
- 7 Chen TC, Cense B, Pierce MC. et al. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging. Arch Ophthalmol 2005; 123: 1715-1720
- 8 Kanamori A, Nakamura M, Tomioka M. et al. Agreement among three types of spectral-domain optical coherent tomography instruments in measuring peripapillary retinal nerve fibre layer thickness. Br J Ophthalmol 2012; 96: 832-837
- 9 Patel NB, Wheat JL, Rodriguez A. et al. Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT. Optom Vis Sci 2012; 89: 652-666
- 10 Leite MT, Rao HL, Weinreb RN. et al. Agreement among spectral-domain optical coherence tomography instruments for assessing retinal nerve fiber layer thickness. Am J Ophthalmol 2011; 151: 85-92
- 11 Leite MT, Rao HL, Zangwill LM. et al. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology 2011; 118: 1334-1339
- 12 Brautaset R, Birkeldh U, Rosén R. et al. Reproducibility of disc and macula optical coherence tomography using the Canon OCT-HS100 as compared with the Zeiss Cirrus HD-OCT. Eur J Ophthalmol 2014; 24: 722-727
- 13 Brautaset R, Birkeldh U, Frehr Alstig P. et al. Repeatability Using Automatic Tracing with Canon OCT- HS100 and Zeiss Cirrus HD-OCT 5000. PLoS One 2016; 11: e0149138
- 14 Cohen MJ, Kaliner E, Frenkel S. et al. Morphometric analysis of human peripapillary retinal nerve fiber layer thickness. Invest Ophthalmol Vis Sci 2008; 49: 941-944
- 15 Vizzeri G, Weinreb RN, Gonzalez-Garcia AO. et al. Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol 2009; 93: 775-781
- 16 Knighton RW, Qian C. An optical model of the human retinal nerve fiber layer: implications of directional reflectance for variability of clinical measurements. J Glaucoma 2000; 9: 56-62
- 17 Kim NR, Lee H, Lee ES. et al. Influence of cataract on time domain and spectral domain optical coherence tomography retinal nerve fiber layer measurements. J Glaucoma 2012; 21: 116-122
- 18 Kim TW, Kim TW, Park KH. et al. An unexpectedly low Stratus optical coherence tomography false-positive rate in the non-nasal quadrants of Asian eyes: indirect evidence of differing retinal nerve fibre layer thickness profiles according to ethnicity. Br J Ophthalmol 2008; 92: 735-739
- 19 Poinoosawmy D, Fontana L, Wu JX. et al. Variation of nerve fibre layer thickness measurements with age and ethnicity by scanning laser polarimetry. Br J Ophthalmol 1997; 81: 350-354
- 20 Kang SH, Hong SW, Im SK. et al. Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51: 4075-4083