RSS-Feed abonnieren
DOI: 10.1055/a-1561-5508
Environmentally Friendly and Recyclable CuCl2-Mediated C–S Bond Coupling Strategy Using DMEDA as Ligand, Base, and Solvent
This work was financially supported by the Natural Science Foundation of Shandong Province (ZR2019QB022), the National Natural Science Foundation of China (21871125) and the Doctoral Scientific Research Startup Foundation of Liaocheng University (No. 31805403).
Abstract
Simple reaction conditions and recyclable reagents are crucial for environmentally friendly industrial applications. An environment-friendly, recyclable and economic strategy was developed to synthesize diaryl chalcogenides by the CuCl2-catalyzed C–S bond-formation reaction via iodobenzenes and benzenethiols/1,2-diphenyldisulfanes using N,N′-dimethylethane-1,2-diamine (DMEDA) as ligand, base, and solvent. For these reactions, especially the reactions of diiodobenzenes and aminobenzenethiols/disulfanediyldianilines, a range of substrates are compatible and give the corresponding products in good to excellent yields. Both of the reagents in the catalytic system (CuCl2/DMEDA) are inexpensive, conveniently separable, and recyclable for more than five cycles.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1561-5508.
- Supporting Information
Publikationsverlauf
Eingereicht: 02. Juni 2021
Angenommen nach Revision: 29. Juli 2021
Accepted Manuscript online:
29. Juli 2021
Artikel online veröffentlicht:
09. September 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Rathore V, Kumar S. Green Chem. 2019; 21: 2670
- 1b Wang YQ, Deng JD, Chen JH, Cao F, Hou YS, Yang YH, Deng XM, Yang JR, Wu LX, Shao XF, Shi T, Wang Z. ACS Catal. 2020; 10: 2707
- 2a Engman L, Stern D, Frisell H, Vessman K, Berglund M, Ek B, Andersson CM. Bioorg. Med. Chem. 1995; 3: 1255
- 2b Amorati R, Pedulli GF, Valgimigli L, Johansson H, Engman L. Org. Lett. 2010; 12: 2326
- 2c De Martino G, Edler MC, LaRegina G, Cosuccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2006; 49: 947
- 3 Bierbeek AV, Gingras M. Tetrahedron Lett. 1998; 39: 6283
- 4 Kondo T, Mitsudo TA. Chem. Rev. 2000; 100: 3205
- 5a Guo SR, Yuan YQ, Xiang JN. Org. Lett. 2013; 15: 4654
- 5b Sujatha A, Thomas AM, Thankachan AP, Anilkumar G. ARKIVOC 2015; (i): 1-28
- 5c Panigrahi R, Sahu SK, Behera PK, Panda S, Rout L. Chem. Eur. J. 2020; 26: 620
- 5d Migita T, Shimizu T, Asami Y, Shiobara J, Kato Y, Kosugi M. Bull. Chem. Soc. Jpn. 1980; 53: 1385
- 6 Swapna K, Murthy SN, Jyothi MT, Nageswar YV. D. Org. Biomol. Chem. 2011; 9: 5989
- 7a Rojas AJ, Pentelute BL, Buchwald SL. Org. Lett. 2017; 19: 4263
- 7b Fernandez-Rodriguez MA, Hartwig JF. Chem. Eur. J. 2010; 16: 2355
- 7c Fernandez-Rodríguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
- 7d Xu J, Liu RY, Yeung CS, Buchwald SL. ACS Catal. 2019; 9: 6461
- 7e Murata M, Buchwald SL. Tetrahedron 2004; 60: 7397
- 7f Li GY. Angew. Chem. Int. Ed. 2001; 40: 1513
- 7g Guo SR, He WM, Xiang JN, Yuan YQ. Chem. Commun. 2014; 50: 8578
- 8 Samuel DT, Christopher JP, Oleg VO. J. Am. Chem. Soc. 2014; 136: 14772
- 9 Wong YC, Jayanth TT, Cheng CH. Org. Lett. 2006; 8: 5613
- 10a Jouffroy M, Kelly CB, Molander GA. Org. Lett. 2016; 18: 876
- 10b Oderinde MS, Frenette M, Robbins DW, Aquila B, Johannes JW. J. Am. Chem. Soc. 2016; 138: 1760
- 10c Zhang Y, Ngeow YK. C, Ying JY. Org. Lett. 2007; 9: 3495
- 10d Sikari R, Sinha S, Das S, Saha S, Chakraborty G, Mondal R, Paul ND. J. Org. Chem. 2019; 84: 4072
- 10e Jones KD, Power DJ, Bierer D, Gericke KM, Stewart SG. Org. Lett. 2018; 20: 208
- 10f Kashin AS, Degtyareva ES, Eremin DB, Ananikov VP. Nat. Commun. 2018; 9: 2936
- 10g Qin YZ, Sun R, Gianoulis NP, Nocera DG. J. Am. Chem. Soc. 2021; 143: 2005
- 10h Yu TY, Pang HB, Cao YL, Gallou F, Lipshutz BH. Angew. Chem. Int. Ed. 2021; 60: 3708
- 11a Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
- 11b Larsson PF, Correa A, Carril M, Norrby PO, Bolm C. Angew. Chem. Int. Ed. 2009; 48: 5691
- 11c Bates CG, Saejueng P, Doherty MQ, Venkataraman D. Org. Lett. 2004; 6: 5005
- 11d Sperotto E, van Klink GP. M, de Vries JG, van Koten GL. J. Org. Chem. 2008; 73: 5625
- 11e Rout L, Sen TK, Punniyamurthy T. Angew. Chem. Int. Ed. 2007; 46: 5583
- 11f Kajiwara R, Takamatsu K, Hirano K, Miura M. Org. Lett. 2020; 22: 5915
- 11g Yarmohammadi N, Ghadermazi M, Mozafari R. RSC Adv. 2021; 11: 9366
- 12 Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
- 13a Baldovino-Pantaleón O, Hernández-Ortega S, Reyes-Martínez R, Morales-Morales D. Adv. Synth. Catal. 2006; 348: 236
- 13b Kawamoto T, Kuma H, Kushi Y. Chem. Commun. 1996; 2121
- 13c Taniguchi N. J. Org. Chem. 2004; 69: 6904
- 14a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
- 14b Carril M, SanMartin R, Dominguez E. Chem. Soc. Rev. 2008; 37: 639
- 14c Wu XF, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
- 15a Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
- 15b Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2008; 47: 3096
- 15c Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
- 15d Surry DS, Buchwald SL. Chem. Sci. 2010; 1: 13
- 15e Monniers F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
- 15f Ma DW, Cai Q. Acc. Chem. Res. 2008; 41: 1450
- 15g Dai W, Shi H, Zhao X, Cao S. Org. Lett. 2016; 18: 4284
- 15h Ke J, Tang Y, Yi H, Li Y, Cheng Y, Liu C, Lei A. Angew. Chem. Int. Ed. 2015; 54: 6604
- 16 Shen GD, Yang BC, Huang XQ, Hou YX, Gao H, Cui JC, Cui CS, Zhang TX. J. Org. Chem. 2017; 82: 3798
- 17 Li F, Meng QQ, Chen HS, Li ZM, Wang QR, Tao FG. Synthesis 2005; 1305
- 18 Szmant HH, Segedi J, Dudek J. J. Org. Chem. 1953; 18: 745
- 19 Burger A, Stanmyer JL. J. Org. Chem. 1956; 21: 1382
- 20 Taniguchi N, Onami T. J. Org. Chem. 2004; 69: 915
For representative reviews, see: