Synthesis 2022; 54(01): 124-132
DOI: 10.1055/a-1561-8299
feature

Rhodium-Catalyzed Aryl Migratory/Decarbonylation of Diaryl Ketones via the Activation of Unstrained C–C Bonds

Tian-Yang Yu
a   Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. of China
,
Hong Lu
a   Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. of China
,
Peng-Cheng Shao
a   Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. of China
,
Xiu-Juan Qi
b   School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. of China
,
Hao Wei
a   Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (NSFC 21971205 and 21901202), Natural Science Basic Research Program of Shaanxi (2020JQ-574 and 2020JQ-576), Scientific Research Program of Shaanxi Education Department (No. 20JK0937), and China Postdoctoral Science Foundation (2020 M673620XB).


Abstract

A Rh-catalyzed aryl migratory/decarbonylation of unstrained ketones has been developed. This viable transformation provides a complementary decarbonylative method using diaryl ketones to afford a variety of alkenylated heterocycles in good yields with moderate to good stereoselectivity and broad substrate scope. The synthetic utility of this protocol is also demonstrated by the conversion of the alkenylated heterocycles to tetrahydrocarbazole derivatives.

Supporting Information



Publication History

Received: 23 June 2021

Accepted after revision: 29 July 2021

Accepted Manuscript online:
29 July 2021

Article published online:
30 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Murakami M, Amii H, Shigeto K, Ito Y. J. Am. Chem. Soc. 1996; 118: 8285
    • 2b Matsuda T, Shigeno M, Murakami M. Chem. Lett. 2006; 35: 288
    • 3a Daugulis O, Brookhart M. Organometallics 2004; 23: 527
    • 3b Lei Z.-Q, Li H, Li Y, Zhang X.-S, Chen K, Wang X, Sun J, Shi Z.-J. Angew. Chem. Int. Ed. 2012; 51: 2690
    • 3c Morioka T, Nishizawa A, Furukawa T, Tobisu M, Chatani N. J. Am. Chem. Soc. 2017; 139: 1416
    • 3d Zhao T.-T, Xu W.-H, Zheng Z.-J, Xu P.-F, Wei H. J. Am. Chem. Soc. 2018; 140: 586
    • 3e Yu T.-Y, Xu W.-H, Lu H, Wei H. Chem. Sci. 2020; 11: 12336
    • 4a Müller E, Segnitz A, Langer E. Tetrahedron Lett. 1969; 1129
    • 4b Müller E, Segnitz A. Liebigs Ann. Chem. 1973; 1583
    • 4c Kaneda K, Azuma H, Wayaku M, Tehanishi S. Chem. Lett. 1974; 3: 215
    • 4d Dermenci A, Whittaker RE, Dong G. Org. Lett. 2013; 15: 2242
    • 4e Dermenci A, Whittaker RE, Gao Y, Cruz FA, Yu Z.-X, Dong G. Chem. Sci. 2015; 6: 3201
    • 4f Whittaker RE, Dong G. Org. Lett. 2015; 17: 5504
  • 5 Golime G, Kim HY, Oh K. Org. Lett. 2018; 20: 942
    • 6a Kondo T, Nakamura A, Okada T, Suzuki N, Wada K, Mitsudo T.-a. J. Am. Chem. Soc. 2000; 122: 6319
    • 6b Kondo T, Taguchi Y, Kaneko Y, Niimi M, Mitsudo T.-a. Angew. Chem. Int. Ed. 2004; 43: 5369
    • 6c Yamamoto Y, Kuwabara S, Hayashi H, Nishiyama H. Adv. Synth. Catal. 2006; 348: 2493
    • 7a Xu T, Savage NA, Dong G. Angew. Chem. Int. Ed. 2014; 53: 1891
    • 7b Zhou X, Zafar I, Dong G. Tetrahedron 2015; 71: 4478
    • 7c Lu Q, Wang B, Yu H, Fu Y. ACS Catal. 2015; 5: 4881
    • 7d Zhou X, Ko HM, Dong G. Angew. Chem. Int. Ed. 2016; 55: 13867
  • 8 Chen P.-h, Xu T, Dong G. Angew. Chem. Int. Ed. 2014; 53: 1674
    • 9a Zeng R, Dong G. J. Am. Chem. Soc. 2015; 137: 1408
    • 9b Guo W, Wu S, Wang T, Xie Q, Duan Y, Luo S, Wang J, Yu X. Org. Chem. Front. 2018; 5: 1613
  • 10 Zeng R, Chen P.-h, Dong G. ACS Catal. 2016; 6: 969
  • 11 Shao P, Yu T, Lu H, Xu P.-F, Wei H. CCS Chem. 2020; 2: 1862
  • 12 The role of acid may be to facilitate the process of β-H elimination with the formation of rhodium benzoate intermediate, see: Ishida M, Tanaka K. Org. Lett. 2013; 15: 2120
  • 13 Tan G, Das M, Maisuls I, Strassert CA, Glorius F. Angew. Chem. Int. Ed. 2021; 60: 15650
  • 14 Lu H, Zhao T.-T, Bai J.-H, Ye D, Xu P.-F, Wei H. Angew. Chem. Int. Ed. 2020; 59: 23537
  • 15 Chen C.-B, Wang X.-F, Cao Y.-J, Cheng H.-G, Xiao W.-J. J. Org. Chem. 2009; 74: 3532
  • 16 Yin L, Wang Y, Sun M, Shi F. Adv. Synth. Catal. 2016; 358: 1093
  • 17 Zhang L, Qiu R, Xue X, Pan Y, Xu C, Wang D, Wang X, Xu L, Li H. Chem. Commun. 2014; 50: 12385
  • 18 Shi L, Zhong X, She H, Lei Z, Li F. Chem. Commun. 2015; 51: 7136
  • 19 Wang S, Hou J.-T, Feng M.-L, Zhang X.-Z, Chen S.-Y, Yu X.-Q. Chem. Commun. 2016; 52: 2709
  • 20 Zhou B, Chen H, Wang C. J. Am. Chem. Soc. 2013; 135: 1264