CC BY 4.0 · Synthesis 2022; 54(01): 133-146
DOI: 10.1055/a-1579-2190
feature

Nickel Boride Catalyzed Reductions of Nitro Compounds and Azides: Nanocellulose-Supported Catalysts in Tandem Reactions

Giampiero Proietti
a   Division of Organic Chemistry, Department of Chemistry, School of Engineering Sciences in Chemistry, Biology and Health, KTH – Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
,
Kaniraj Jeya Prathap
a   Division of Organic Chemistry, Department of Chemistry, School of Engineering Sciences in Chemistry, Biology and Health, KTH – Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
,
Xinchen Ye
b   Department Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology, 10044 Stockholm, Sweden
,
Richard T. Olsson
b   Department Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology, 10044 Stockholm, Sweden
,
Peter Dinér
a   Division of Organic Chemistry, Department of Chemistry, School of Engineering Sciences in Chemistry, Biology and Health, KTH – Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
› Author Affiliations
K.J.P., G.P. and P.D. thank the Wenner-Gren Stiftelserna (Grant No. UPD2016-0084) and KTH Royal institute of Technology for financial support.


Abstract

Nickel boride catalyst prepared in situ from NiCl2 and sodium borohydride allowed, in the presence of an aqueous solution of TEMPO-oxidized nanocellulose (0.01 wt%), the reduction of a wide range of nitroarenes and aliphatic nitro compounds. Here we describe how the modified nanocellulose has a stabilizing effect on the catalyst that enables low loading of the nickel salt pre-catalyst. Ni-B prepared in situ from a methanolic solution was also used to develop a greener and facile reduction of organic azides, offering a substantially lowered catalyst loading with respect to reported methods in the literature. Both aromatic and aliphatic azides were reduced, and the protocol is compatible with a one-pot Boc-protection of the obtained amine yielding the corresponding carbamates. Finally, bacterial crystalline nanocellulose was chosen as a support for the Ni-B catalyst to allow an easy recovery step of the catalyst and its recyclability for new reduction cycles.

Supporting Information



Publication History

Received: 08 June 2021

Accepted after revision: 05 August 2021

Accepted Manuscript online:
05 August 2021

Article published online:
20 October 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Downing R, Kunkeler P, Van Bekkum H. Catal. Today 1997; 37: 121
    • 2a Ono N. The Nitro Group in Organic Synthesis . John Wiley & Sons; New York: 2001
    • 2b Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. John Wiley & Sons; New York: 2001
    • 3a Aditya T, Pal A, Pal T. Chem. Commun. 2015; 51: 9410
    • 3b Campelo JM, Luna D, Luque R, Marinas JM, Romero AA. ChemSusChem 2009; 2: 18
    • 4a Boronat M, Concepción P, Corma A, González S, Illas F, Serna P. J. Am. Chem. Soc. 2007; 129: 16230
    • 4b Adhikari B, Biswas A, Banerjee A. ACS Appl. Mater. Interfaces 2012; 4: 5472
  • 5 Takasaki M, Motoyama Y, Higashi K, Yoon S.-H, Mochida I, Nagashima H. Org. Lett. 2008; 10: 1601
  • 6 Nie R, Wang J, Wang L, Qin Y, Chen P, Hou Z. Carbon 2012; 50: 586
    • 7a Tuteja J, Nishimura S, Ebitani K. RSC Adv. 2014; 4: 38241
    • 7b Wang P, Liu H, Niu J, Li R, Ma J. Catal. Sci. Technol. 2014; 4: 1333
    • 7c Yamada YM, Yuyama Y, Sato T, Fujikawa S, Uozumi Y. Angew. Chem. Int. Ed. 2014; 53: 127
    • 7d Guo Y, Li J, Zhao F, Lan G, Li L, Liu Y, Si Y, Jiang Y, Yang B, Yang R. RSC Adv. 2016; 6: 7950
  • 8 Zhao Z, Yang H, Li Y, Guo X. Green Chem. 2014; 16: 1274
    • 9a Rathore PS, Patidar R, Shripathi T, Thakore S. Catal. Sci. Technol. 2015; 5: 286
    • 9b Kalbasi RJ, Zamani F. RSC Adv. 2014; 4: 7444
    • 9c Zamani F, Kianpour S. Catal. Commun. 2014; 45: 1
    • 9d Ren Y, Wei H, Yin G, Zhang L, Wang A, Zhang T. Chem. Commun. 2017; 53: 1969
    • 10a Gao G, Tao Y, Jiang J. Green Chem. 2008; 10: 439
    • 10b Dey R, Mukherjee N, Ahammed S, Ranu BC. Chem. Commun. 2012; 48: 7982
    • 10c Moghaddam MM, Pieber B, Glasnov T, Kappe CO. ChemSusChem 2014; 7: 3122
    • 10d MacNair AJ, Tran M.-M, Nelson JE, Sloan GU, Ironmonger A, Thomas SP. Org. Biomol. Chem. 2014; 12: 5082
    • 10e Gu X, Sun Z, Wu S, Qi W, Wang H, Xu X, Su D. Chem. Commun. 2013; 49: 10088
    • 10f Jagadeesh RV, Surkus A.-E, Junge H, Pohl M.-M, Radnik J, Rabeah J, Huan H, Schünemann V, Brückner A, Beller M. Science 2013; 342: 1073
    • 10g Jagadeesh RV, Wienhöfer G, Westerhaus FA, Surkus A.-E, Pohl M.-M, Junge H, Junge K, Beller M. Chem. Commun. 2011; 47: 10972
    • 10h Wang C, Ciganda R, Salmon L, Gregurec D, Irigoyen J, Moya S, Ruiz J, Astruc D. Angew. Chem. Int. Ed. 2016; 55: 3091
  • 11 Feng J, Handa S, Gallou F, Lipshutz BH. Angew. Chem. Int. Ed. 2016; 55: 8979
    • 12a Hofer L, Shultz J, Panson R, Anderson R. Inorg. Chem. 1964; 3: 1783
    • 12b Deng J, Yang J, Sheng S, Chen H, Xiong G. J. Catal. 1994; 150: 434
    • 12c He Y, Qiao M, Hu H, Pei Y, Li H, Deng J, Fan K. Mater. Lett. 2002; 56: 952
    • 12d Okamoto Y, Nitta Y, Imanaka T, Teranishi S. J. Chem. Soc., Faraday Trans. 1 1979; 75: 2027
    • 12e Schreifels J, Maybury P, Swartz WJr. J. Catal. 1980; 65: 195
    • 12f Okamoto Y, Nitta Y, Imanaka T, Teranishi S. J. Catal. 1980; 64: 397
    • 12g Shen J, Hu Z, Zhang Q, Zhang L, Chen Y. J. Appl. Phys. 1992; 71: 5217
    • 12h Geng J, Jefferson DA, Johnson BF. Chem. Commun. 2007; 969
    • 13a Paul R, Buisson P, Joseph N. Ind. Eng. Chem. 1952; 44: 1006
    • 13b Schlesinger H, Brown HC, Finholt A, Gilbreath JR, Hoekstra HR, Hyde EK. J. Am. Chem. Soc. 1953; 75: 215
    • 13c Ganem B, Osby JO. Chem. Rev. 1986; 86: 763
    • 14a Brown HC, Brown CA. 1963; 85: 1005
    • 14b Brown CA. J. Org. Chem. 1970; 35: 1900
    • 14c Brown CA, Ahuja VK. J. Org. Chem. 1973; 38: 2226
  • 15 Nose A, Kudo T. Chem. Pharm. Bull. 1984; 32: 2421
    • 16a Nose A, Kudo T. Chem. Pharm. Bull. 1988; 36: 1529
    • 16b Nose A, Kudo T. Chem. Pharm. Bull. 1989; 37: 816
    • 17a Khurana JM, Dawra K, Sharma P. RSC Adv. 2015; 5: 12048
    • 17b Khurana JM, Arora R. Synthesis 2009; 1127
    • 17c Khurana JM, Magoo D, Dawra K. Monatsh. Chem. 2016; 147: 1113
    • 17d Khurana JM, Kandpal BM, Kukreja G, Sharma P. Can. J. Chem. 2006; 84: 1019
    • 17e Khurana JM, Kumar S, Nand B. Can. J. Chem. 2008; 86: 1052
  • 18 Khurana JM, Gogia A. Org. Prep. Proced. Int. 1997; 29: 1
    • 19a Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC. Langmuir 1994; 10: 4726
    • 19b Legrand J, Taleb A, Gota S, Guittet M.-J, Petit C. Langmuir 2002; 18: 4131
    • 20a Sahiner N, Ozay H, Ozay O, Aktas N. Appl. Catal., A 2010; 385: 201
    • 20b Wen H, Yao K, Zhang Y, Zhou Z, Kirschning A. Catal. Commun. 2009; 10: 1207
    • 20c Rahman A, Jonnalagadda S. Catal. Lett. 2008; 123: 264
    • 20d Wu Z, Zhang M, Li W, Mu S, Tao K. J. Mol. Catal. A: Chem. 2007; 273: 277
  • 21 Liu D, Wu Q, Andersson RL, Hedenqvist MS, Farris S, Olsson RT. J. Mater. Chem. A 2015; 3: 15745
  • 22 Wu T, Zeng Z, Siqueira G, De France K, Sivaraman D, Schreiner C, Figi R, Zhang Q, Nyström G. Nanoscale 2020; 12: 7383
    • 23a Eyley S, Thielemans W. Nanoscale 2014; 6: 7764
    • 23b Sassi J.-F, Tekely P, Chanzy H. Cellulose 2000; 7: 119
  • 24 Isogai A, Saito T, Fukuzumi H. Nanoscale 2011; 3: 71
  • 25 Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW. ACS Appl. Mater. Interfaces 2014; 6: 6127
  • 26 Wei H, Rodriguez K, Renneckar S, Vikesland PJ. Environ. Sci.: Nano 2014; 1: 302
  • 27 Kaushik M, Moores A. Green Chem. 2016; 18: 622
    • 28a Xu Y, Zhang L, Cui Y. J. Appl. Polym. Sci. 2008; 110: 2996
    • 28b Cirtiu CM, Dunlop-Briere AF, Moores A. Green Chem. 2011; 13: 288
    • 28c Rezayat M, Blundell RK, Camp JE, Walsh DA, Thielemans W. ACS Sustainable Chem. Eng. 2014; 2: 1241
    • 28d Kaushik M, Basu K, Benoit C, Cirtiu CM, Vali H, Moores A. J. Am. Chem. Soc. 2015; 137: 6124
    • 28e Koga H, Tokunaga E, Hidaka M, Umemura Y, Saito T, Isogai A, Kitaoka T. Chem. Commun. 2010; 46: 8567
    • 28f Azetsu A, Koga H, Isogai A, Kitaoka T. Catalysts 2011; 1: 83
    • 28g Wu X, Lu C, Zhou Z, Yuan G, Xiong R, Zhang X. Environ. Sci.: Nano 2014; 1: 71
    • 28h Zhou Z, Lu C, Wu X, Zhang X. RSC Adv. 2013; 3: 26066
    • 28i Chen L, Cao W, Quinlan PJ, Berry RM, Tam KC. ACS Sustainable Chem. Eng. 2015; 3: 978
    • 28j Huang J.-L, Gray DG, Li C.-J. Beilstein J. Org. Chem. 2013; 9: 1388
    • 28k Lam E, Hrapovic S, Majid E, Chong JH, Luong JH. Nanoscale 2012; 4: 997
    • 28l Sun D, Yang J, Li J, Yu J, Xu X, Yang X. Appl. Surf. Sci. 2010; 256: 2241
    • 28m Wu X, Lu C, Zhang W, Yuan G, Xiong R, Zhang X. J. Mater. Chem. A 2013; 1: 8645
    • 28n Zhou P, Wang H, Yang J, Tang J, Sun D, Tang W. Ind. Eng. Chem. Res. 2012; 51: 5743
    • 28o Lin X, Wu M, Wu D, Kuga S, Endo T, Huang Y. Green Chem. 2011; 13: 283
    • 28p Harrad MA, Valerga P, Puerta MC, Houssini I, Ali MA, Firdoussi LE, Karim A. Molecules 2011; 16: 367
  • 29 Prathap KJ, Wu Q, Olsson RT, Dinér P. Org. Lett. 2017; 19: 4746
    • 30a Galland S, Andersson RL, Salajková M, Ström V, Olsson RT, Berglund LA. J. Mater. Chem. C 2013; 1: 7963
    • 30b Olsson RT, Azizi Samir MA. S, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW. Nat. Nanotechnol. 2010; 5: 584
    • 31a Hayashi H, Ohno A, Oka S. Bull. Chem. Soc. Jpn. 1976; 49: 506
    • 31b Martínez-Sarti L, Díez-González S. ChemCatChem 2013; 5: 1722
  • 32 Arai N, Onodera N, Ohkuma T. Tetrahedron Lett. 2016; 57: 4183
  • 33 Capello C, Fischer U, Hungerbühler K. Green Chem. 2007; 9: 927
    • 34a Corey EJ, Nicolaou KC, Balanson RD, Machida Y. Synthesis 1975; 590
    • 34b Gartiser T, Selve C, Delpuech J.-J. Tetrahedron Lett. 1983; 24: 1609
    • 34c Kotsuki H, Ohishi T, Araki T. Tetrahedron Lett. 1997; 38: 2129
    • 34d Jung YJ, Chang YM, Lee JH, Yoon CM. Tetrahedron Lett. 2002; 43: 8735
  • 35 Udumula V, Nazari SH, Burt SR, Alfindee MN, Michaelis DJ. ACS Catal. 2016; 6: 4423
    • 36a Prakash Rao HS, Reddy KS, Turnbull K, Borchers V. Synth. Commun. 1992; 22: 1339
    • 36b Prakash Rao HS, Siva P. Synth. Commun. 1994; 24: 549
    • 36c Yoon NM, Choi J, Shon YS. Synth. Commun. 1993; 23: 3047
    • 36d Maddani MR, Moorthy SK, Prabhu KR. Tetrahedron 2010; 66: 329
    • 37a Fringuelli F, Pizzo F, Vaccaro L. Synthesis 2000; 646
    • 37b Ahammed S, Saha A, Ranu BC. J. Org. Chem. 2011; 76: 7235
    • 38a Scriven EF, Turnbull K. Chem. Rev. 1988; 88: 297
    • 38b McDonald FE, Danishefsky SJ. J. Org. Chem. 1992; 57: 7001
    • 38c Cheng JM, Chee SH, Dölen Y, Verdoes M, Timmer MS, Stocker BL. Carbohydr. Res. 2019; 486: 107840
    • 38d Nyffeler PT, Liang C.-H, Koeller KM, Wong C.-H. J. Am. Chem. Soc. 2002; 124: 10773
    • 38e Sahoo L, Singhamahapatra A, Paul KJ, Loganathan D. Tetrahedron Lett. 2013; 54: 5361
  • 39 Rolla F. J. Org. Chem. 1982; 47: 4327
  • 40 Wuts PG, Greene TW. Greene’s Protective Groups in Organic Synthesis, 4th ed. John Wiley & Sons; Hoboken: 2006
  • 41 Ashour RM, Abdel-Magied AF, Wu Q, Olsson RT, Forsberg K. Polymers 2020; 12: 1104
    • 42a Jozala AF, de Lencastre-Novaes LC, Lopes AM, de Carvalho Santos-Ebinuma V, Mazzola PG, Pessoa AJr, Grotto D, Gerenutti M, Chaud MV. Appl. Microbiol. Biotechnol. 2016; 100: 2063
    • 42b Jeremic S, Djokic L, Ajdačić V, Božinović N, Pavlovic V, Manojlović DD, Babu R, Senthamaraikannan R, Rojas O, Opsenica I. Int. J. Biol. Macromol. 2019; 129: 351
    • 42c Zhang Q, Zhang L, Wu W, Xiao H. Carbohydr. Polym. 2020; 229: 115454
  • 43 Saito T, Kimura S, Nishiyama Y, Isogai A. Biomacromolecules 2007; 8: 2485
  • 44 Iguchi M, Yamanaka S, Budhiono A. J. Mater. Sci. 2000; 35: 261
    • 45a Cantillo D, Moghaddam MM, Kappe CO. J. Org. Chem. 2013; 78: 4530
    • 45b Kantam ML, Reddy RS, Srinivas K, Chakravarti R, Sreedhar B, Figueras F, Reddy CV. J. Mol. Catal. A: Chem. 2012; 355: 96
  • 46 Grimes KD, Gupte A, Aldrich CC. Synthesis 2010; 1441
  • 47 Gann AW, Amoroso JW, Einck VJ, Rice WP, Chambers JJ, Schnarr NA. Org. Lett. 2014; 16: 2003
  • 48 Salvagnini C, Gharbi S, Boxus T, Marchand-Brynaert J. Eur. J. Med. Chem. 2007; 42: 37
  • 49 Maury J, Feray L, Bertrand MP, Kapat A, Renaud P. Tetrahedron 2012; 68: 9606
  • 50 Dryzhakov M, Hellal M, Wolf EN, Falk FC, Moran J. J. Am. Chem. Soc. 2015; 137: 9555
  • 51 Morrison ZA, Nitz M. Org. Lett. 2020; 22: 1453
  • 52 Menuel SP, Doumert B, Saitzek SB, Ponchel A, Delevoye L, Monflier E, Hapiot FD. R. J. Org. Chem. 2015; 80: 6259
  • 53 Burland PA, Osborn HM, Turkson A. Bioorg. Med. Chem. 2011; 19: 5679
  • 54 Ryu B.-Y, Emrick T. Angew. Chem. Int. Ed. 2010; 49: 9644
  • 55 Xie S, Lopez SA, Ramström O, Yan M, Houk K. J. Am. Chem. Soc. 2015; 137: 2958