Subscribe to RSS
DOI: 10.1055/a-1580-7327
Behandlungsstrategie beim radiojodrefraktären differenzierten Schilddrüsenkarzinom
Treatment strategy by radioiodine refractory differentiated thyroid cancerZusammenfassung
Traditionell besteht das multimodale Therapiekonzept bei den differenzierten Schilddrüsenkarzinomen in der Thyreoidektomie mit Neck-Dissection (bei cN+-Halsstatus) und adjuvanten Radiojodablation mit abschließender risikoadaptierter TSH-Suppression. Das Ausmaß der Radiojodaufnahme beim metastasierten Schilddrüsenkarzinom spielt eine signifikante Rolle bei der Einschätzung der Prognose. Das fehlende Jodspeicherungsvermögen einer Läsion in Zusammenschau mit dem fehlenden Abfall des Tumormarkers Thyreoglobulin sowie radiologische Zeichen einer Tumorprogression charakterisieren den Radiojod-refraktären Patienten. Aufgrund des meistens über einen langen Zeitraum indolenten Verlaufs erscheint in den meisten Fällen ein abwartendes Verhalten in Kombination mit lokaler Metastasenbehandlung sowie Symptomlinderung primär sinnvoll zu sein. Der Nachweis einer Veränderung der Tumordynamik ist der Zeitpunkt, um eine Systemtherapie zu evaluieren. Diese beruht auf Multi-Tyrosinkinase-Inhibitoren (Sorafenib, Lenvatinib). Diese Substanzen sind größtenteils mit einem ungünstigen Nebenwirkungsprofil assoziiert (Diarrhö, Hautauschläge, arterielle Hypertonie mit hypertensiver Entgleisung, lokale Wundheilungsstörungen), welches zu einer nicht vernachlässigbaren Rate einer therapieassoziierten Morbidität sowie einer hohen Anzahl an Therapieunterbrechungen führt. Daher sind im Jahr 2020 2 selektive RET-Inhibitoren (Selpercatinib, Pralsetinib) für die differenzierten Schilddrüsenkarzinome von der FDA zugelassen worden. Eine neue Perspektive für die Zukunft wären die unterschiedlichen Redifferenzierungsstrategien, welche auf die Steigerung der Sensitivität der Tumorzellen auf Radiojod abzielen.
Abstract
Traditionally, the multimodal therapy concept for differentiated thyroid carcinomas consists of thyroidectomy with neck dissection (for cN + neck) and adjuvant radioiodine ablation with subsequent risk-adapted TSH suppression. The extent of radioiodine uptake in metastatic thyroid carcinomas plays a significant role is significant in terms of prognosis. Radioiodine refractory lesions are characterized by the lack of radioiodine uptake in combination with the lack of decrease in the tumor marker thyroglobulin as well as signs of progression on imaging. Due to the mostly indolent course over a long period of time, a wait-and-see strategy in combination with local management of distant metastase symptom relief appears to be primarily sufficient. By evidence for change in tumor dynamics, the need for a multi-tyrosine kinase inhibitor (sorafenib, lenvatinib)-based systemic therapy should be thoroughly evaluated. These substances are mostly associated with an unfavorable side-effect profile (diarrhea, rash, arterial hypertension, local wound healing disorders), which leads to a non-negligible rate of treatment-associated morbidity and a high number of treatment interruptions. For this reason, two selective RET inhibitors (selpercatinib, pralsetinib) for differentiated thyroid carcinomas were approved by the FDA in 2020. A new perspective for the future would be the variable re-differentiation strategies, which aim to increase the sensitivity of tumor cells to radioiodine.
Schlüsselwörter
Metastasiertes Schilddrüsenkarzinom - Differenziertes Schilddrüsenkarzinom - Radiojodrefraktäres Schilddrüsenkarzinom - Tyrosinkinase-Inhibitor - RET-InhibitorKeywords
metastasized thyroid cancer - differentiated thyroid cancer - radioiodine refractory thyroid cancer - tyrosine kinase inhibitor - RET inhibitorPublication History
Received: 15 January 2021
Accepted after revision: 03 August 2021
Article published online:
28 September 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Luster M, Aktolun C, Amendoeira I. et al. European Perspective on 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: Proceedings of an Interactive International Symposium. Thyroid 2019; 29: 7-26 DOI: 10.1089/thy.2017.0129. (PMID: 30484394)
- 2 Haugen BR. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: What is new and what has changed?. Cancer 2017; 123: 372-381 DOI: 10.1002/cncr.30360. (PMID: 27741354)
- 3 American Thyroid Association – ATA guidelines. Available at: https://www.thyroid.org/professionals/ata-professional-guidelines/. Accessed 30.11.2020.
- 4 National Comprehensive Cancer Network – NCCN – Thyroid cancer. www.nccn.org/professionals/physician_gls/PDF/thyroid.pdf.
- 5 Ozkan E, Soydal C, Nak D. et al. Dynamic risk stratification for predicting the recurrence in differentiated thyroid cancer. Nucl Med Commun 2017; 38: 1055-1059 DOI: 10.1097/MNM.0000000000000766. (PMID: 28957841)
- 6 van Velsen EFS, Stegenga MT, van Kemenade FJ. et al. Evaluating the 2015 American Thyroid Association Risk Stratification System in High-Risk Papillary and Follicular Thyroid Cancer Patients. Thyroid 2019; 29: 1073-1079 DOI: 10.1089/thy.2019.0053. (PMID: 31140385)
- 7 Schlumberger MJ, Filetti S, Hay ID, Larsen RP, Kronenberg HM, Melmed S, Polonsky KS. Non toxic goiter and thyroid neoplasia. In: Williams’ textbook of endocrinology. Philadelphia: WB Saunders Company; 2003: 457-490
- 8 Shobab L, Gomes-Lima C, Zeymo A. et al. Clinical, Pathological, and Molecular Profiling of Radioactive Iodine Refractory Differentiated Thyroid Cancer. Thyroid 2019; 29: 1262-1268 DOI: 10.1089/thy.2019.0075. (PMID: 31319763)
- 9 Suzuki C, Kiyota N, Imamura Y. et al. Exploratory analysis of prognostic factors for lenvatinib in radioiodine-refractory differentiated thyroid cancer. Head Neck 2019; 41: 3023-3032 DOI: 10.1002/hed.25784. (PMID: 31013380)
- 10 Durante C, Haddy N, Baudin E. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006; 91: 2892-2899 DOI: 10.1210/jc.2005-2838. (PMID: 16684830)
- 11 Schwartz LH, Litiere S, de Vries E. et al. RECIST 1.1-Update and clarification: From the RECIST committee. Eur J Cancer 2016; 62: 132-137 DOI: 10.1016/j.ejca.2016.03.081. (PMID: 27189322)
- 12 Cabanillas ME, Takahashi S. Managing the adverse events associated with lenvatinib therapy in radioiodine-refractory differentiated thyroid cancer. Semin Oncol 2019; 46: 57-64 DOI: 10.1053/j.seminoncol.2018.11.004. (PMID: 30685073)
- 13 Kreissl MC, Janssen MJR, Nagarajah J. Current Treatment Strategies in Metastasized Differentiated Thyroid Cancer. J Nucl Med 2019; 60: 9-15 DOI: 10.2967/jnumed.117.190819. (PMID: 30190306)
- 14 Tumino D, Frasca F, Newbold K. Updates on the Management of Advanced, Metastatic, and Radioiodine Refractory Differentiated Thyroid Cancer. Front Endocrinol (Lausanne) 2017; 8: 312 DOI: 10.3389/fendo.2017.00312. (PMID: 29209273)
- 15 Moneke I, Kaifi JT, Kloeser R. et al. Pulmonary metastasectomy for thyroid cancer as salvage therapy for radioactive iodine-refractory metastases. Eur J Cardiothorac Surg 2018; 53: 625-630 DOI: 10.1093/ejcts/ezx367. (PMID: 29092022)
- 16 Iniguez-Ariza NM, Bible KC, Clarke BL. Bone metastases in thyroid cancer. J Bone Oncol 2020; 21: 100282 DOI: 10.1016/j.jbo.2020.100282. (PMID: 32154098)
- 17 Satcher RL, Lin P, Harun N. et al. Surgical management of appendicular skeletal metastases in thyroid carcinoma. Int J Surg Oncol 2012; 2012: 417086 DOI: 10.1155/2012/417086. (PMID: 23304478)
- 18 Van Tol KM, Hew JM, Jager PL. et al. Embolization in combination with radioiodine therapy for bone metastases from differentiated thyroid carcinoma. Clin Endocrinol (Oxf) 2000; 52: 653-659 DOI: 10.1046/j.1365-2265.2000.00998.x. (PMID: 10792347)
- 19 Osborne JR, Kondraciuk JD, Rice SL. et al. Thyroid Cancer Brain Metastasis: Survival and Genomic Characteristics of a Large Tertiary Care Cohort. Clin Nucl Med 2019; 44: 544-549 DOI: 10.1097/RLU.0000000000002618. (PMID: 31107749)
- 20 Wertenbroek MW, Links TP, Prins TR. et al. Radiofrequency ablation of hepatic metastases from thyroid carcinoma. Thyroid 2008; 18: 1105-1110 DOI: 10.1089/thy.2008.0080. (PMID: 18816179)
- 21 Miyauchi A, Kudo T, Miya A. et al. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid 2011; 21: 707-716 DOI: 10.1089/thy.2010.0355. (PMID: 21649472)
- 22 Rossing RM, Jentzen W, Nagarajah J. et al. Serum Thyroglobulin Doubling Time in Progressive Thyroid Cancer. Thyroid 2016; 26: 1712-1718 DOI: 10.1089/thy.2016.0031. (PMID: 27750024)
- 23 Albano D, Panarotto MB, Durmo R. et al. Clinical and prognostic role of detection timing of distant metastases in patients with differentiated thyroid cancer. Endocrine 2019; 63: 79-86 DOI: 10.1007/s12020-018-1713-2. (PMID: 30112608)
- 24 Lorenz K, Dralle H. Aerodigestive fistula formation in antiangiogenic tyrosine kinase inhibitor therapy. Chirurg 2014; 85: 720 DOI: 10.1007/s00104-014-2842-7. (PMID: 25070521)
- 25 Alaminos MEL, Garcia MM, Aznar PT. et al. Skin fistula after sorafenib use in differentiated thyroid cancer 21st European Congress of Endocrinology. Lyon. 2019
- 26 Blevins DP, Dadu R, Hu M. et al. Aerodigestive fistula formation as a rare side effect of antiangiogenic tyrosine kinase inhibitor therapy for thyroid cancer. Thyroid 2014; 24: 918-922 DOI: 10.1089/thy.2012.0598. (PMID: 24635127)
- 27 Cheng C, Nayernama A, Christopher Jones S. et al. Wound healing complications with lenvatinib identified in a pharmacovigilance database. J Oncol Pharm Pract 2019; 25: 1817-1822
- 28 Brose MS, Nutting CM, Jarzab B. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014; 384: 319-328 DOI: 10.1016/S0140-6736(14)60421-9. (PMID: 24768112)
- 29 Vetter C. Erste neue Behandlungsoption nach 40 Jahren: Sorafenib schließt Therapielücke beim Radiojod-refraktären Schilddrüsenkarzinom. PharmaForum 2014; (37) 14
- 30 Schilddrüsenkarzinom – Sorafenib schließt Lücke in der Therapie. Ärztezeitung.
- 31 Crispo F, Notarangelo T, Pietrafesa M. et al. BRAF Inhibitors in Thyroid Cancer: Clinical Impact, Mechanisms of Resistance and Future Perspectives. Cancers (Basel) 2019; 11 DOI: 10.3390/cancers11091388. (PMID: 31540406)
- 32 Available at: https://www.ema.europa.eu/en/documents/product-information/nexavar-epar-product-information_de.pdf.
- 33 Schlumberger M, Tahara M, Wirth LJ. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015; 372: 621-630 DOI: 10.1056/NEJMoa1406470. (PMID: 25671254)
- 34 Wirth LJ, Tahara M, Robinson B. et al. Treatment-emergent hypertension and efficacy in the phase 3 Study of (E7080) lenvatinib in differentiated cancer of the thyroid (SELECT). Cancer 2018; 124: 2365-2372 DOI: 10.1002/cncr.31344. (PMID: 29656442)
- 35 Sueta D, Suyama K, Sueta A. et al. Lenvatinib, an oral multi-kinases inhibitor, -associated hypertension: Potential role of vascular endothelial dysfunction. Atherosclerosis 2017; 260: 116-120 DOI: 10.1016/j.atherosclerosis.2017.03.039. (PMID: 28390289)
- 36 Santoro M, Moccia M, Federico G. et al. RET Gene Fusions in Malignancies of the Thyroid and Other Tissues. Genes (Basel) 2020; 11 DOI: 10.3390/genes11040424. (PMID: 32326537)
- 37 Kurzrock R. Selpercatinib Aimed at RET-Altered Cancers. N Engl J Med 2020; 383: 868-869 DOI: 10.1056/NEJMe2024831. (PMID: 32846067)
- 38 Wirth LJ, Sherman E, Robinson B. et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N Engl J Med 2020; 383: 825-835 DOI: 10.1056/NEJMoa2005651. (PMID: 32846061)
- 39 ClinicalTrials.gov. Phase 1/2 Study of the Highly-selective RET Inhibitor, Pralsetinib (BLU-667), in Patients With Thyroid Cancer, Non-Small Cell Lung Cancer, and Other Advanced Solid Tumors (ARROW). Available at: https://clinicaltrials.gov/ct2/show/NCT03037385.
- 40 Laetsch TW, DuBois SG, Mascarenhas L. et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol 2018; 19: 705-714 DOI: 10.1016/S1470-2045(18)30119-0. (PMID: 29606586)
- 41 Drilon A, Laetsch TW, Kummar S. et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med 2018; 378: 731-739 DOI: 10.1056/NEJMoa1714448. (PMID: 29466156)
- 42 Fu H, Cheng L, Jin Y. et al. MAPK Inhibitors Enhance HDAC Inhibitor-Induced Redifferentiation in Papillary Thyroid Cancer Cells Harboring BRAF (V600E): An In Vitro Study. Mol Ther Oncolytics 2019; 12: 235-245 DOI: 10.1016/j.omto.2019.01.007. (PMID: 30847387)
- 43 Vaisman F, Carvalho DP, Vaisman M. A new appraisal of iodine refractory thyroid cancer. Endocr Relat Cancer 2015; 22: R301-310 DOI: 10.1530/ERC-15-0300. (PMID: 26307020)
- 44 Kim S, Chung JK, Min HS. et al. Expression patterns of glucose transporter-1 gene and thyroid specific genes in human papillary thyroid carcinoma. Nucl Med Mol Imaging 2014; 48: 91-97 DOI: 10.1007/s13139-013-0249-x. (PMID: 24900148)
- 45 Buffet C, Wassermann J, Hecht F. et al. Redifferentiation of radioiodine-refractory thyroid cancers. Endocr Relat Cancer 2020; 27: R113-R132 DOI: 10.1530/ERC-19-0491. (PMID: 32191916)
- 46 Iravani A, Solomon B, Pattison DA. et al. Mitogen-Activated Protein Kinase Pathway Inhibition for Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer: An Evolving Protocol. Thyroid 2019; 29: 1634-1645 DOI: 10.1089/thy.2019.0143. (PMID: 31637953)
- 47 Ho AL, Grewal RK, Leboeuf R. et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 2013; 368: 623-632 DOI: 10.1056/NEJMoa1209288. (PMID: 23406027)
- 48 Rothenberg SM, Daniels GH, Wirth LJ. Redifferentiation of Iodine-Refractory BRAF V600E-Mutant Metastatic Papillary Thyroid Cancer with Dabrafenib-Response. Clin Cancer Res 2015; 21: 5640-5641 DOI: 10.1158/1078-0432.CCR-15-2298. (PMID: 26672087)
- 49 Huillard O, Tenenbaum F, Clerc J. et al. Restoring Radioiodine Uptake in BRAF V600E-Mutated Papillary Thyroid Cancer. J Endocr Soc 2017; 1: 285-287 DOI: 10.1210/js.2016-1114. (PMID: 29264486)
- 50 Jaber T, Waguespack SG, Cabanillas ME. et al. Targeted Therapy in Advanced Thyroid Cancer to Resensitize Tumors to Radioactive Iodine. J Clin Endocrinol Metab 2018; 103: 3698-3705 DOI: 10.1210/jc.2018-00612. (PMID: 30032208)
- 51 Leboulleux S, Dupuy C, Lacroix L. et al. Redifferentiation of a BRAF(K601E)-Mutated Poorly Differentiated Thyroid Cancer Patient with Dabrafenib and Trametinib Treatment. Thyroid 2019; 29: 735-742 DOI: 10.1089/thy.2018.0457. (PMID: 30880598)
- 52 Lakshmanan A, Scarberry D, Green JA. et al. Modulation of thyroidal radioiodide uptake by oncological pipeline inhibitors and Apigenin. Oncotarget 2015; 6: 31792-31804 DOI: 10.18632/oncotarget.5172. (PMID: 26397139)
- 53 Somnay YR, Yu XM, Lloyd RV. et al. Notch3 expression correlates with thyroid cancer differentiation, induces apoptosis, and predicts disease prognosis. Cancer 2017; 123: 769-782 DOI: 10.1002/cncr.30403. (PMID: 27861750)
- 54 Lopez-Campistrous A, Adewuyi EE, Benesch MGK. et al. PDGFRalpha Regulates Follicular Cell Differentiation Driving Treatment Resistance and Disease Recurrence in Papillary Thyroid Cancer. EBioMedicine 2016; 12: 86-97 DOI: 10.1016/j.ebiom.2016.09.007. (PMID: 27682510)