Subscribe to RSS
DOI: 10.1055/a-1581-0934
Nickel-Catalyzed Paired Electrochemical Cross-Coupling of Aryl Halides with Nucleophiles
Financial support for this work was provided by the Beijing Municipal Science & Technology Commission (Z181100001318008), the Ministry of Science and Technology of the People’s Republic of China, and the Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua.
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. However, most electrochemical transformations only employ one electrode (anodic oxidation or cathodic reduction) to afford the desired products, while the chemistry that occurs at the counter electrode yields stoichiometric waste. In contrast, paired electrochemical reactions can synchronously utilize the anodic and cathodic reactions to deliver the desired product, thus improving the atom economy and energy efficiency of the electrolytic process. This review gives an overview of recent advances in nickel-catalyzed paired electrochemical cross-coupling reactions of aryl/alkenyl halides with different nucleophiles.
1 Introduction
2 Nickel-Catalyzed Cross-Coupling Reactions
2.1 C–C Bond Formation
2.2 C–N Bond Formation
2.3 C–S/O Bond Formation
2.4 C–P Bond Formation
3 Conclusion
Key words
electrochemistry - paired electrolysis - nickel catalysis - cross-coupling - redox neutral reactionsPublication History
Received: 14 July 2021
Accepted after revision: 09 August 2021
Accepted Manuscript online:
09 August 2021
Article published online:
29 September 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Yoshida J.-i, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
- 2 Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
- 3 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 4 Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
- 5 Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
- 6 Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
- 7 Zhu C, Yue H, Nikolaienko P, Rueping M. CCS Chem. 2020; 2: 179
- 8 Badalyan A, Stahl SS. Nature 2016; 535: 406
- 9 Hayashi R, Shimizu A, Yoshida J.-i. J. Am. Chem. Soc. 2016; 138: 8400
- 10 Horn EJ, Rosen BR, Chen Y, Tang J, Chen K, Eastgate MD, Baran PS. Nature 2016; 533: 77
- 11 Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
- 12 Li W, Nonaka T, Chou T.-C. Electrochemistry 1999; 67: 4
- 13 Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
- 14 Liang S, Zeng C.-C, Luo X.-G, Ren F.-Z, Tian H.-Y, Sun B.-G, Little RD. Green Chem. 2016; 18: 2222
- 15 Zhang L, Hu X. Chem. Sci. 2020; 11: 10786
- 16 Ma Y, Yao X, Zhang L, Ni P, Cheng R, Ye J. Angew. Chem. Int. Ed. 2019; 58: 16548
- 17 Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 18 Qiu D, Mo F, Zhang Y, Wang J. Adv. Organomet. Chem. 2017; 67: 151
- 19 Neufeldt SR, Sanford MS. Adv. Synth. Catal. 2012; 354: 3517
- 20 Zhong J.-S, Yu Y, Shi Z, Ye K.-Y. Org. Chem. Front. 2021; 8: 1315
- 21 Gale-Day ZJ. Synthesis 2021; 53: 879
- 22 Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 23 Jiang H, Sha S.-C, Jeong SA, Manor BC, Walsh PJ. Org. Lett. 2019; 21: 1735
- 24 Sha S.-C, Tcyrulnikov S, Li M, Hu B, Fu Y, Kozlowski MC, Walsh PJ. J. Am. Chem. Soc. 2018; 140: 12415
- 25 Vasilopoulos A, Zultanski SL, Stahl SS. J. Am. Chem. Soc. 2017; 139: 7705
- 26 Zhang W, Chen P, Liu G. J. Am. Chem. Soc. 2017; 139: 7709
- 27 Pandey DK, Ankade SB, Ali A, Vinod CP, Punji B. Chem. Sci. 2019; 10: 9493
- 28 Ruan Z, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 3153
- 29 Uemura T, Yamaguchi M, Chatani N. Angew. Chem. Int. Ed. 2016; 55: 3162
- 30 Samanta RC, Struwe J, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 14154
- 31 Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
- 32 Suzuki J, Tanigawa M, Inagi S, Fuchigami T. ChemElectroChem 2016; 3: 2078
- 33 Luo J, Hu B, Wu W, Hu M, Liu TL. Angew. Chem. Int. Ed. 2021; 60: 6107
- 34 Li Z, Sun W, Wang X, Li L, Zhang Y, Li C. J. Am. Chem. Soc. 2021; 143: 3536
- 35 Lee D.-H, Kwon K.-H, Yi CS. Science 2011; 333: 1613
- 36 Lee D.-H, Kwon K.-H, Yi CS. J. Am. Chem. Soc. 2012; 134: 7325
- 37 Jin J, MacMillan DW. C. Nature 2015; 525: 87
- 38 Stache EE, Ertel AB, Rovis T, Doyle AG. ACS Catal. 2018; 8: 11134
- 39 Rossi-Ashton JA, Clarke AK, Unsworth WP, Taylor RJ. K. ACS Catal. 2020; 10: 7250
- 40 Heravi MM, Kheilkordi Z, Zadsirjan V, Heydari M, Malmir M. J. Organomet. Chem. 2018; 861: 17
- 41 Cai Q, Zhou W. Chin. J. Chem. 2020; 38: 879
- 42 Fischer C, Koenig B. Beilstein J. Org. Chem. 2011; 7: 59
- 43 Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 44 Beletskaya IP, Cheprakov AV. Organometallics 2012; 31: 7753
- 45 Li C, Kawamata Y, Nakamura H, Vantourout JC, Liu Z, Hou Q, Bao D, Starr JT, Chen J, Yan M, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 13088
- 46 Kawamata Y, Vantourout JC, Hickey DP, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards MA, Garrido-Castro AF, deGruyter JN, Nakamura H, Knouse K, Qin C, Clay KJ, Bao D, Li C, Starr JT, Garcia-Irizarry C, Sach N, White HS, Neurock M, Minteer SD, Baran PS. J. Am. Chem. Soc. 2019; 141: 6392
- 47 Nakamura H, Yasui K, Kanda Y, Baran PS. J. Am. Chem. Soc. 2019; 141: 1494
- 48 Liu D, Liu Z.-R, Ma C, Jiao K.-J, Sun B, Wei L, Lefranc J, Herbert S, Mei T.-S. Angew. Chem. Int. Ed. 2021; 60: 9444
- 49 Bolm C, Hildebrand JP. Tetrahedron Lett. 1998; 39: 5731
- 50 Bortnikov EO, Semenov SN. J. Org. Chem. 2021; 86: 782
- 51 Gangjee A, Zeng Y, Talreja T, McGuire JJ, Kisliuk RL, Queener SF. J. Med. Chem. 2007; 50: 3046
- 52 Le Grand B, Pignier C, Létienne R, Cuisiat F, Rolland F, Mas A, Vacher B. J. Med. Chem. 2008; 51: 3856
- 53 Sun Z.-Y, Botros E, Su A.-D, Kim Y, Wang E, Baturay NZ, Kwon C.-H. J. Med. Chem. 2000; 43: 4160
- 54 Sayah M, Organ MG. Chem. Eur. J. 2013; 19: 16196
- 55 Alvaro E, Hartwig JF. J. Am. Chem. Soc. 2009; 131: 7858
- 56 Fernández-Rodríguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
- 57 Mann G, Baranano D, Hartwig JF, Rheingold AL, Guzei IA. J. Am. Chem. Soc. 1998; 120: 9205
- 58 Murata M, Buchwald SL. Tetrahedron 2004; 60: 7397
- 59 Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
- 60 Uyeda C, Tan Y, Fu GC, Peters JC. J. Am. Chem. Soc. 2013; 135: 9548
- 61 Liu D, Ma H.-X, Fang P, Mei T.-S. Angew. Chem. Int. Ed. 2019; 58: 5033
- 62 Wang Y, Deng L, Wang X, Wu Z, Wang Y, Pan Y. ACS Catal. 2019; 9: 1630
- 63 Agerbirk N, Olsen CE. Phytochemistry 2012; 77: 16
- 64 Rye CS, Withers SG. Carbohydr. Res. 2004; 339: 699
- 65 Zhu M, Alami M, Messaoudi S. Chem. Commun. 2020; 56: 4464
- 66 Mo Y, Lu Z, Rughoobur G, Patil P, Gershenfeld N, Akinwande AI, Buchwald SL, Jensen KF. Science 2020; 368: 1352
- 67 Wei L, Wang Z.-H, Jiao K.-J, Liu D, Ma C, Fang P, Mei T.-S. J. Org. Chem. 2021; in press, DOI: DOI: 10.1021/acs.joc.1c00204.
- 68 Baran PS, Zhang H.-J, Chen L, Oderinde MS, Edwards JT, Kawamata Y. Angew. Chem. Int. Ed. 2021; 60: 20700
- 69 Demmer CS, Krogsgaard-Larsen N, Bunch L. Chem. Rev. 2011; 111: 7981
- 70 George A, Veis A. Chem. Rev. 2008; 108: 4670
- 71 Moonen K, Laureyn I, Stevens CV. Chem. Rev. 2004; 104: 6177
- 72 Schwan AL. Chem. Soc. Rev. 2004; 33: 218
- 73 Xu K, Yang F, Zhang G, Wu Y. Green Chem. 2013; 15: 1055
- 74 Bloomfield AJ, Herzon SB. Org. Lett. 2012; 14: 4370
- 75 Zhao Y.-L, Wu G.-J, Li Y, Gao L.-X, Han F.-S. Chem. Eur. J. 2012; 18: 9622
- 76 Yang J, Xiao J, Chen T, Han L.-B. J. Org. Chem. 2016; 81: 3911
- 77 Kinbara A, Ito M, Abe T, Yamagishi T. Tetrahedron 2015; 71: 7614
- 78 Sengmany S, Ollivier A, Le Gall E, Léonel E. Org. Biomol. Chem. 2018; 16: 4495
- 79 Bai Y, Liu N, Wang S, Wang S, Ning S, Shi L, Cui L, Zhang Z, Xiang J. Org. Lett. 2019; 21: 6835