Synthesis 2022; 54(01): 49-66
DOI: 10.1055/a-1605-9572
short review

Transition-Metal-Catalyzed Stereo- and Regioselective Hydrosilylation of Unsymmetrical Alkynes

Peng He
,
Meng-Yang Hu
,
Xin-Yu Zhang
,
Shou-Fei Zhu
National Natural Science Foundation of China (21625204, 21971119, 22001129), the Ministry of Education of the People’s Republic of China, “111” project (B06005), National Program for Support of Top-notch Young Professionals, Special Project for Research and Development in Key Areas of Guangdong Province (2020B010188001), China Postdoctoral Science Foundation (2019M660972), and Frontiers Science Center for New Organic Matter of Nankai University (63181206).


Dedicated to the 100th Anniversary of Chemistry at Nankai University.

Abstract

Alkyne hydrosilylation is one of the most efficient methods for the synthesis of alkenyl silicon derivatives and has been a hot topic of research for decades. This short review summarizes the progress in transition-metal-catalyzed stereo- and regioselective hydrosilylation of unsymmetrical alkynes. Topics are discussed based on different types of alkynes and the selectivities.

1 Introduction

2 Terminal Alkyne Hydrosilylation

2.1 β-E Selectivity

2.2 β-Z Selectivity

2.3 α-selectivity

3 Internal Alkyne Hydrosilylation

3.1 Aryl–Alkyl Acetylenes

3.2 Alkyl–Alkyl Acetylenes

3.3 Internal Alkynes with Polarized Substituents

4 Summary and Outlook



Publication History

Received: 07 July 2021

Accepted after revision: 23 August 2021

Accepted Manuscript online:
23 August 2021

Article published online:
14 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Luh T.-Y, Liu S.-T. Synthetic Applications of Allylsilanes and Vinylsilanes. In The Chemistry of Organic Silicon Compounds, Vol. 1. Wiley; Weinheim: 1998: 1793
  • 2 Langkopf E, Schinzer D. Chem. Rev. 1995; 95: 1375
  • 3 Anderson E, Lim D. Synthesis 2012; 44: 983
  • 4 Marciniec B. Hydrosilylation: A Comprehensive Review on Recent Advances. Springer; Dordrecht: 2009
  • 5 de Almeida LD, Wang HL, Junge K, Cui XJ, Beller M. Angew. Chem. Int. Ed. 2021; 60: 550
  • 6 Cui C, Li J, Chen W. Synlett 2021; 32: 962
  • 7 Gao WW, Ding ST. Synthesis 2020; 52: 3549
  • 8 Wen HA, Liu GX, Huang Z. Coord. Chem. Rev. 2019; 386: 138
  • 9 Chen J, Guo J, Lu Z. Chin. J. Chem. 2018; 36: 1075
  • 10 Sun J, Deng L. ACS Catal. 2016; 6: 290
  • 11 Zaranek M, Marciniec B, Pawluć P. Org. Chem. Front. 2016; 3: 1337
  • 12 Greenhalgh MD, Jones AS, Thomas SP. ChemCatChem 2015; 7: 190
  • 13 Trost BM, Ball ZT. Synthesis 2005; 853
  • 14 Rummelt SM, Radkowski K, Roşca D.-A, Fürstner A. J. Am. Chem. Soc. 2015; 137: 5506
  • 15 Trost BM, Ball ZT, Joge T. Angew. Chem. Int. Ed. 2003; 42: 3415
  • 16 Trost BM, Ball ZT. J. Am. Chem. Soc. 2003; 125: 30
  • 17 Denmark SE, Pan W. Org. Lett. 2001; 3: 61
  • 18 Na Y, Chang S. Org. Lett. 2000; 2: 1887
  • 19 Marshall JA, Yanik MM. Org. Lett. 2000; 2: 2173
  • 20 Tamao K, Maeda K, Tanaka T, Ito Y. Tetrahedron Lett. 1988; 29: 6955
  • 21 Arii H, Nakabayashi K, Mochida K, Kawashima T. Molecules 2016; 21: 999
  • 22 Trost BM, Ball ZT. J. Am. Chem. Soc. 2001; 123: 12726
  • 23 Trost BM, Ball ZT, Joge T. J. Am. Chem. Soc. 2002; 124: 7922
  • 24 Chung LW, Wu YD, Trost BM, Ball ZT. J. Am. Chem. Soc. 2003; 125: 11578
  • 25 Trost BM, Ball ZT, Laemmerhold KM. J. Am. Chem. Soc. 2005; 127: 10028
  • 26 Xie X, Zhang X, Gao W, Meng C, Wang X, Ding S. Commun. Chem. 2019; 2: 101
  • 27 Chalk AJ, Harrod JF. J. Am. Chem. Soc. 1965; 87: 16
  • 28 Benkeser RA, Burrous ML, Nelson LE, Swisher JV. J. Am. Chem. Soc. 1961; 83: 4385
  • 29 Iovel IG, Goldberg YS, Shymanska MV, Lukevics E. Organometallics 1987; 6: 1410
  • 30 Tojo S, Isobe M. Tetrahedron Lett. 2005; 46: 381
  • 31 Green M, Spencer JL, Stone FG. A, Tsipis CA. J. Chem. Soc., Dalton Trans. 1977; 1525
  • 32 Lewis LN, Sy KG, Bryant GL, Donahue PE. Organometallics 1991; 10: 3750
  • 33 Itami K, Mitsudo K, Nishino A, Yoshida J. J. Org. Chem. 2002; 67: 2645
  • 34 Dierick S, Vercruysse E, Berthon-Gelloz G, Markó IE. Chem. Eur. J. 2015; 21: 17073
  • 35 De Bo G, Berthon-Gelloz G, Tinant B, Markó IE. Organometallics 2006; 25: 1881
  • 36 Berthon-Gelloz G, Schumers JM, De Bo G, Markó IE. J. Org. Chem. 2008; 73: 4190
  • 37 Munz D, Allolio C, Meyer D, Micksch M, Roessner L, Strassner T. J. Organomet. Chem. 2015; 794: 330
  • 38 Zhang F, Bai Y, Yang X, Li J, Peng J. Phosphorus, Sulfur Silicon Relat. Elem. 2017; 192: 1271
  • 39 Aneetha H, Wu W, Verkade JG. Organometallics 2005; 24: 2590
  • 40 Hamze A, Provot O, Brion J.-D, Alami M. J. Organomet. Chem. 2008; 693: 2789
  • 41 Blug M, Le Goff X.-F, Mézailles N, Le Floch P. Organometallics 2009; 28: 2360
  • 42 Ortega-Moreno L, Peloso R, Maya C, Suárez A, Carmona E. Chem. Commun. 2015; 51: 17008
  • 43 Watanabe H, Kitahara T, Motegi T, Nagai Y. J. Organomet. Chem. 1977; 139: 215
  • 44 Chance JM, Nile TA. J. Mol. Catal. 1987; 42: 91
  • 45 Takeuchi R, Tanouchi N. J. Chem. Soc., Perkin Trans. 1 1994; 2909
  • 46 Mori A, Takahisa E, Yamamura Y, Kato T, Mudalige AP, Kajiro H, Hirabayashi K, Nishihara Y, Hiyama T. Organometallics 2004; 23: 1755
  • 47 Mori A, Takahisa E, Kajiro H, Hirabayashi K, Nishihara Y, Hiyama T. Chem. Lett. 1998; 27: 443
  • 48 Ojima I, Clos N, Donovan RJ, Ingallina P. Organometallics 1990; 9: 3127
  • 49 Faller JW, D’Alliessi DG. Organometallics 2002; 21: 1743
  • 50 Murai T, Nagaya E, Shibahara F, Maruyama T, Nakazawa H. J. Organomet. Chem. 2015; 794: 76
  • 51 Morales-Cerón JP, Lara P, López-Serrano J, Santos LL, Salazar V, Álvarez E, Suárez A. Organometallics 2017; 36: 2460
  • 52 Corre Y, Werlé C, Brelot-Karmazin L, Djukic J.-P, Agbossou-Niedercorn F, Michon C. J. Mol. Catal. A: Chem. 2016; 423: 256
  • 53 Esteruelas MA, Oro LA, Valero C. Organometallics 1991; 10: 462
  • 54 Katayama H, Taniguchi K, Kobayashi M, Sagawa T, Minami T, Ozawa F. J. Organomet. Chem. 2002; 645: 192
  • 55 Gao R, Pahls DR, Cundari TR, Yi CS. Organometallics 2014; 33: 6937
  • 56 Yamashita H, Uchimaru Y. Chem. Commun. 1999; 1763
  • 57 Motoda D, Shinokubo H, Oshima K. Synlett 2002; 1529
  • 58 Wu G, Chakraborty U, Jacobi von Wangelin A. Chem. Commun. 2018; 54: 12322
  • 59 Wu C, Teo WJ, Ge S. ACS Catal. 2018; 8: 5896
  • 60 Guo J, Wang H, Xing S, Hong X, Lu Z. Chem 2019; 5: 881
  • 61 Li R.-H, An X.-M, Yang Y, Li D.-C, Hu Z.-L, Zhan Z.-P. Org. Lett. 2018; 20: 5023
  • 62 Mo Z, Xiao J, Gao Y, Deng L. J. Am. Chem. Soc. 2014; 136: 17414
  • 63 Docherty JH, Peng J, Dominey AP, Thomas SP. Nat. Chem. 2017; 9: 595
  • 64 Bartik T, Nagy G, Kvintovics P, Happ B. J. Organomet. Chem. 1993; 453: 29
  • 65 Chaulagain MR, Mahandru GM, Montgomery J. Tetrahedron 2006; 62: 7560
  • 66 Wang H, Huang Y, Wang X, Cui X, Shi F. Org. Biomol. Chem. 2020; 18: 7554
  • 67 Zhou Y.-B, Liu Z.-K, Fan X.-Y, Li R.-H, Zhang G.-L, Chen L, Pan Y.-M, Tang H.-T, Zeng J.-H, Zhan Z.-P. Org. Lett. 2018; 20: 7748
  • 68 Hu M.-Y, He P, Qiao T.-Z, Sun W, Li W.-T, Lian J, Li J.-H, Zhu S.-F. J. Am. Chem. Soc. 2020; 142: 16894
  • 69 Hu M.-Y, Lian J, Sun W, Qiao T.-Z, Zhu S.-F. J. Am. Chem. Soc. 2019; 141: 4579
  • 70 Takahashi T, Bao F, Gao G, Ogasawara M. Org. Lett. 2003; 5: 3479
  • 71 Wang Z.-L, Zhang F.-L, Xu J.-L, Shan C.-C, Zhao M, Xu Y.-H. Org. Lett. 2020; 22: 7735
  • 72 Levine DS, Tilley TD, Andersen RA. Chem. Commun. 2017; 53: 11881
  • 73 Hu M.-Y, He Q, Fan S.-J, Wang Z.-C, Liu L.-Y, Mu Y.-J, Peng Q, Zhu S.-F. Nat. Commun. 2018; 9: 221
  • 74 Zou H.-N, Zhu S.-F. Prog. Chem. 2020; 32: 1766
  • 75 Mas-Marzá E, Sanaú M, Peris E. Inorg. Chem. 2005; 44: 9961
  • 76 McBee JL, Escalada J, Tilley TD. J. Am. Chem. Soc. 2009; 131: 12703
  • 77 Bartlewicz O, Jankowska-Wajda M, Maciejewski H. Catalysts 2020; 10: 608
  • 78 Puerta-Oteo R, Munarriz J, Polo V, Jiménez MV, Pérez-Torrente JJ. ACS Catal. 2020; 10: 7367
  • 79 Sánchez-Page B, Munarriz J, Jiménez MV, Perez-Torrente JJ, Blasco J, Subias G, Passarelli V, Álvarez P. ACS Catal. 2020; 10: 13334
  • 80 Apple DC, Brady KA, Chance JM, Heard NE, Nile TA. J. Mol. Catal. 1985; 29: 55
  • 81 Tanke RS, Crabtree RH. J. Am. Chem. Soc. 1990; 112: 7984
  • 82 Zanardi A, Peris E, Mata JA. New J. Chem. 2008; 32: 120
  • 83 Navarro M, Smith CA, Albrecht M. Inorg. Chem. 2017; 56: 11688
  • 84 Pérez-Torrente JJ, Nguyen DH, Jiménez MV, Modrego FJ, Puerta-Oteo R, Gómez-Bautista D, Iglesias M, Oro LA. Organometallics 2016; 35: 2410
  • 85 Iglesias M, Sanz Miguel PJ, Polo V, Fernández-Alvarez FJ, Pérez-Torrente JJ, Oro LA. Chem. Eur. J. 2013; 19: 17559
  • 86 Iglesias M, Pérez-Nicolás M, Miguel PJ. S, Polo V, Fernández-Alvarez FJ, Pérez-Torrente JJ, Oro LA. Chem. Commun. 2012; 48: 9480
  • 87 Jun C.-H, Crabtree RH. J. Organomet. Chem. 1993; 447: 177
  • 88 Esteruelas MA, López AM, Oro LA, Tolosa J. J. Mol. Catal. A: Chem. 1995; 96: 21
  • 89 Maifeld SV, Tran MN, Lee D. Tetrahedron Lett. 2005; 46: 105
  • 90 Aricó CS, Cox LR. Org. Biomol. Chem. 2004; 2: 2558
  • 91 Mutoh Y, Mohara Y, Saito S. Org. Lett. 2017; 19: 5204
  • 92 Yang YF, Chung LW, Zhang X, Houk KN, Wu YD. J. Org. Chem. 2014; 79: 8856
  • 93 Challinor AJ, Calin M, Nichol GS, Carter NB, Thomas SP. Adv. Synth. Catal. 2016; 358: 2404
  • 94 Greenhalgh MD, Frank DJ, Thomas SP. Adv. Synth. Catal. 2014; 356: 584
  • 95 Teo WJ, Wang C, Tan YW, Ge S. Angew. Chem. Int. Ed. 2017; 56: 4328
  • 96 Du X, Hou W, Zhang Y, Huang Z. Org. Chem. Front. 2017; 4: 1517
  • 97 Yang X, Wang C. Angew. Chem. Int. Ed. 2018; 57: 923
  • 98 Zhang XY, Ji X, Xie XZ, Ding ST. Chem. Commun. 2018; 54: 12958
  • 99 Sore HF, Blackwell DT, Macdonald SJ, Spring DR. Org. Lett. 2010; 12: 2806
  • 100 Trost BM, Ball ZT. J. Am. Chem. Soc. 2005; 127: 17644
  • 101 Kawanami Y, Sonoda Y, Mori T, Yamamoto K. Org. Lett. 2002; 4: 2825
  • 102 Menozzi C, Dalko PI, Cossy J. J. Org. Chem. 2005; 70: 10717
  • 103 Wada F, Abe S, Yonemaru N, Kikukawa K, Matsuda T. Bull. Chem. Soc. Jpn. 1991; 64: 1701
  • 104 Iglesias M, Aliaga-Lavrijsen M, Miguel PJ. S, Fernández-Alvarez FJ, Pérez-Torrente JJ, Oro LA. Adv. Synth. Catal. 2015; 357: 350
  • 105 Rivera-Claudio M, Rozell J, Ramirez-Oliva E, Cervantes J, Pannell KH. J. Organomet. Chem. 1996; 521: 267
  • 106 Rivero-Crespo MA, Leyva-Pérez A, Corma A. Chem. Eur. J. 2017; 23: 1702
  • 107 Guo J, Shen X, Lu Z. Angew. Chem. Int. Ed. 2017; 56: 615
  • 108 Guo J, Lu Z. Angew. Chem. Int. Ed. 2016; 55: 10835
  • 109 Zuo Z, Yang J, Huang Z. Angew. Chem. Int. Ed. 2016; 55: 10839
  • 110 Wen HA, Wan XL, Huang Z. Angew. Chem. Int. Ed. 2018; 57: 6319
  • 111 Zhang S, Ibrahim JJ, Yang Y. Org. Lett. 2018; 20: 6265
  • 112 Skrodzki M, Patroniak V, Pawluc P. Org. Lett. 2021; 23: 663
  • 113 Zong Z, Yu Q, Sun N, Hu B, Shen Z, Hu X, Jin L. Org. Lett. 2019; 21: 5767
  • 114 Wang D, Lai Y, Wang P, Leng X, Xiao J, Deng L. J. Am. Chem. Soc. 2021; 143: 12847
  • 115 Berding J, van Paridon JA, van Rixel VH. S, Bouwman E. Eur. J. Inorg. Chem. 2011; 2450
  • 116 Rivera-Hernández A, Fallon BJ, Ventre S, Simon C, Tremblay MH, Gontard G, Derat E, Amatore M, Aubert C, Petit M. Org. Lett. 2016; 18: 4242
  • 117 Yong L, Kirleis K, Butenschön H. Adv. Synth. Catal. 2006; 348: 833
  • 118 Molander GA, Retsch WH. Organometallics 1995; 14: 4570
  • 119 Ding S, Song L.-J, Chung LW, Zhang X, Sun J, Wu Y.-D. J. Am. Chem. Soc. 2013; 135: 13835
  • 120 Ding S, Song L.-J, Wang Y, Zhang X, Chung L.-W, Wu Y.-D, Sun J. Angew. Chem. Int. Ed. 2015; 54: 5632
  • 121 Song L.-J, Ding S, Wang Y, Zhang X, Wu Y.-D, Sun J. J. Org. Chem. 2016; 81: 6157
  • 122 Huang K.-H, Isobe M. Eur. J. Org. Chem. 2014; 4733
  • 123 Hosokawa S, Isobe M. Tetrahedron Lett. 1998; 39: 2609
  • 124 Konno T, Taku K.-i, Yamada S, Moriyasu K, Ishihara T. Org. Biomol. Chem. 2009; 7: 1167