Subscribe to RSS
DOI: 10.1055/a-1623-8849
Immunhämatologische Untersuchungen und Blutkomponenten-Auswahl bei Früh- und Reifgeborenen
Immunohematological procedures and blood component selection in premature and mature infants
Zusammenfassung
In der vorliegenden Übersichtsarbeit diskutieren wir, wie iatrogene Blutverluste durch immunhämatologische Untersuchungen bei Früh- und Reifgeborenen minimiert werden können. Die Hauptursache für die Transfusion von Erythrozytenkonzentraten (EK) sind dabei iatrogene Blutverluste durch diagnostische Blutentnahmen. In einer Beobachtungsstudie betrug der iatrogene Blutverlust bei Frühgeborenen in den ersten 28 Lebenstagen im Median 24,2 mL/kg im Vergleich zum transfundierten EK-Volumen von 30 mL/kg im selben Zeitraum [1]. Die Reduktion von diagnostischen Blutentnahmen stellt somit eine effiziente Maßnahme zur Reduzierung von EK-Transfusionen bei Frühgeborenen dar. Rationale und bedarfsadaptierte immunhämatologische Untersuchungen können den Blutverlust reduzieren, Transfusionen vermeiden und die entstehenden Kosten senken. Ferner stellen wir dar, wie durch differenzierte Auswahl von Blutkomponenten das Auftreten unerwünschter Ereignisse bei der Transfusion von Neugeborenen verhindert werden kann und regen an, restriktivere Indikationsstellungen zur Transfusion insbesondere in der Frühgeborenenmedizin zu diskutieren.
Abstract
In the present review, we discuss how iatrogenic blood loss through immunohematologic testing can be minimized in preterm and mature infants. In this context, the main cause of red blood cell (RBC) concentrate transfusion is iatrogenic blood loss due to diagnostic blood sampling. In an observational study, the median iatrogenic blood loss in preterm infants during the first 28 days of life was 24.2 mL/kg compared with the transfused RBC volume of 30 mL/kg during the same period [1]. Thus, reduction of diagnostic blood sampling is an efficient measure to reduce RBC concentrate transfusions in preterm infants. Evidence-based immunohematologic testing can reduce blood loss, avoid transfusions, and reduce the costs incurred. Furthermore, we present how the occurrence of adverse events in neonatal transfusion can be prevented by evidence-based selection of blood components and suggest discussing more restrictive indications for transfusion, especially in premature infants.
Schlüsselwörter
Neonatale Immunhämatologie - Neonatale Erythrozytentransfusion - Neonatale ThrombozytentransfusionKey words
neonatal immunohematology - neonatal red blood cell transfusion - neonatal platelet transfusionPublication History
Article published online:
11 May 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Fustolo-Gunnink SF, Roehr CC, Lieberman L. et al. Platelet and red cell transfusions for neonates: lifesavers or Trojan horses?. Expert Rev Hematol 2019; 12: 797-800
- 2 Hajjaj OI, Clarke G, Lieberman L. Immunohematology testing using umbilical cord blood: review of the literature, survey of practice and guidance development. Transfusion 2022; 62: 871-886
- 3 New HV, Berryman J, Bolton-Maggs PHB. et al. Guidelines on transfusion for fetuses, neonates and older children. Br J Haematol 2016; 175: 784-828
- 4 Klein HG, Anstee DJ. Mollisonʼs blood transfusion in clinical medicine. 12. Aufl. Chichester, West Sussex, UK: Wiley-Blackwell; 2014.
- 5 Twu Y-C, Chen C-P, Hsieh C-Y. et al. I branching formation in erythroid differentiation is regulated by transcription factor C/EBPalpha. Blood 2007; 110: 4526-4534
- 6 Fischer K. Morbus haemolyticus neonatorum im AB0-system. Stuttgart: Georg Thieme Verlag; 1961
- 7 Pawlak Z, Lopez M. Développement des antigènes ABH et Ii chez les enfants de 0 à 16 ans. Rev Fr Transfus Immunohematol 1979; 22: 253-263
- 8 Das S, Shastry S, Chakravarthy PK. et al. Clinical implication of immunohaematological tests in ABO haemolytic disease of newborn: revisiting an old disease. Transfus Med 2021; 31: 30-35
- 9 Schellong G. Über den Einfluss mütterlicher Antikörper des AB0-Systems auf Reticulocytenzahl und Serumbilirubin bei Frühgeborenen. Z Kinderheilkd 1964; 90: 134-149
- 10 Westenberg LEH, van der Geest BAM, Lingsma HF. et al. Better assessment of neonatal jaundice at home (BEAT Jaundice @home): protocol for a prospective, multicentre diagnostic study. BMJ Open 2022; 12: e061897
- 11 Ree IMC, Lopriore E, Zwiers C. et al. Suppression of compensatory erythropoiesis in hemolytic disease of the fetus and newborn due to intrauterine transfusions. Am J Obstet Gynecol 2020; 223: 119.e1-119.e10
- 12 Lee AJ, Leonard A, Markham KB. Fetal and neonatal reticulocyte count response to intrauterine transfusion for the treatment of red blood cell alloimmunization. J Pediatr Hematol Oncol 2022; 44: e1046-e1049
- 13 Bundesärztekammer. Richtlinie zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Richtlinie Hämotherapie). Aufgestellt gemäß §§ 12a und 18 Transfusionsgesetz von der Bundesärztekammer im Einvernehmen mit dem Paul-Ehrlich-Institut. Im Internet: https://www.bundesaerztekammer.de/themen/medizin-und-ethik/wissenschaftlicher-beirat/stellungnahmen-richtlinien-jahresberichte/haemotherapie-transfusionsmedizin/richtlinie-zur-gewinnung-von-blut-und-blutbestandteilen-und-zur-anwendung-von-blutprodukten-richtlinie-haemotherapieStand: 20.12.2022
- 14 Lee E, Cantwell C, Muyibi KO. et al. Blocking phenomenon occurs with murine monoclonal antibodies (anti-Fy(a)) in a neonate with a positive direct antiglobulin test due to maternal anti-Fy(a). Blood Transfus 2015; 13: 672-674
- 15 Daniels G. Variants of RhD – current testing and clinical consequences. Br J Haematol 2013; 161: 461-470
- 16 Milkins C, Berryman J, Cantwell C. et al. Guidelines for pre-transfusion compatibility procedures in blood transfusion laboratories. British Committee for Standards in Haematology. Transfus Med 2013; 23: 3-35
- 17 deHaas M, Thurik FF, van der Ploeg CPB. et al. Sensitivity of fetal RHD screening for safe guidance of targeted anti-D immunoglobulin prophylaxis: prospective cohort study of a nationwide programme in the Netherlands. BMJ 2016; 355: i5789
- 18 Legler TJ, Lührig S, Korschineck I. et al. Diagnostic performance of the noninvasive prenatal FetoGnost RhD assay for the prediction of the fetal RhD blood group status. Arch Gynecol Obstet 2021; 304: 1191-1196
- 19 Türkmen T, Qiu D, Cooper N. et al. Red blood cell alloimmunization in neonates and children up to 3 years of age. Transfusion 2017; 57: 2720-2726
- 20 Tamai Y, Ohto H, Takahashi H. et al. Transfusion-related alloimmunization to red blood cell antigens in Japanese pediatric recipients. Transfus Med Rev 2021; 35: 29-36
- 21 Herschel M, Karrison T, Wen M. et al. Evaluation of the direct antiglobulin (Coombs') test for identifying newborns at risk for hemolysis as determined by end-tidal carbon monoxide concentration (ETCOc); and comparison of the Coombsʼ test with ETCOc for detecting significant jaundice. J Perinatol 2002; 22: 341-347
- 22 Valsami S, Politou M, Boutsikou Τ. et al. Importance of direct antiglobulin test (DAT) in cord blood: causes of DAT (+) in a cohort study. Pediatr Neonatol 2015; 56: 256-260
- 23 Shash HA, Alkhater SA. Maternal blood group and routine direct antiglobulin testing in neonates: is there a role for selective neonatal testing. Children (Basel) 2021; 8
- 24 Dinesh D. Review of positive direct antiglobulin tests found on cord blood sampling. J Paediatr Child Health 2005; 41: 504-507
- 25 Levine DH, Meyer HB. Newborn screening for ABO hemolytic disease. Clin Pediatr (Phila) 1985; 24: 391-394
- 26 Talwar M, Jain A, Sharma RR. et al. The spectrum of ABO haemolytic disease of the fetus and newborn in neonates born to group O mothers. Vox Sang 2022; 117: 1112-1120
- 27 Keir A, Agpalo M, Lieberman L. et al. How to use: the direct antiglobulin test in newborns. Arch Dis Child Educ Pract Ed 2015; 100: 198-203
- 28 Maayan-Metzger A, Leibovitch L, Schushan-Eisen I. et al. Maternal anti-D prophylaxis during pregnancy and risk of hemolysis among preterm infants. J Perinatol 2014; 34: 906-908
- 29 Maayan-Metzger A, Schwartz T, Sulkes J. et al. Maternal anti-D prophylaxis during pregnancy does not cause neonatal haemolysis. Arch Dis Child Fetal Neonatal Ed 2001; 84: F60-2
- 30 Pollock JM, Bowman JM. Placental transfer of Rh antibody (anti-D IgG) during pregnancy. Vox Sang 1982; 43: 327-334
- 31 Ulrich TJB, Ellsworth MA, Carey WA. et al. Predictive ability of direct antibody testing in infants born to mothers with Rh(D) and other minor red blood cell antibodies. Am J Perinatol 2015; 32: 987-992
- 32 Toro Espinosa LA, Jaramillo Arbeláez P, Gómez M. et al. Is it necessary to add the eluate testing to the direct antiglobulin test to improve the detection of maternal erythrocyte alloantibodies. Transfus Apher Sci 2021; 60: 103177
- 33 Fong SW, Qaqundah BY, Taylor WF. Developmental patterns of ABO isoagglutinins in normal children correlated with the effects of age, sex, and maternal isoagglutinins. Transfusion 1974; 14: 551-559
- 34 auf der Maur C, Hodel M, Nydegger UE. et al. Age dependency of ABO histo-blood group antibodies: reexamination of an old dogma. Transfusion 1993; 33: 915-918
- 35 Thomaidis T, Agathopoulos A, Matsaniotis N. Natural isohemagglutinin production by the fetus. J Pediatr 1969; 74: 39-48
- 36 Chattoraj A, Gilbert R, Josephson AM. Serological demonstration of fetal production of blood group isoantibodies. Vox Sang 1968; 14: 289-291
- 37 Toivanen P, Hirvonen T. Iso- and heteroagglutinins in human fetal and neonatal sera. Scand J Haematol 1969; 6: 42-48
- 38 Fu H, Lin Z, Lin S. et al. Analysis of IgM antibody of ABO blood group in infants from 0 to 6 months in Xiamen area. Chinese Journal of Primary Medicine and Pharmacy 2017; 2167-2170
- 39 Brossard Y, Pons JC, Jrad I. et al. Maternal-fetal hemorrhage: a reappraisal. Vox Sang 1996; 71: 103-107
- 40 Refaai MA, Cahill C, Masel D. et al. Is it time to reconsider the concepts of "universal donor" and "ABO compatible" transfusions?. Anesth Analg 2018; 126: 2135-2138
- 41 Crawford TM, Andersen CC, Hodyl NA. et al. Effect of washed versus unwashed red blood cells on transfusion-related immune responses in preterm newborns. Clin Transl Immunology 2022; 11: e1377
- 42 Cardigan R, New HV, Tinegate H. et al. Washed red cells: theory and practice. Vox Sang 2020; 115: 606-616
- 43 Bundesärztekammer. Querschnitts-Leitlinien zur Therapie mit Blutkomponenten und Plasmaderivaten. Gesamtnovelle 2020 (27.01.2023). Im Internet: https://www.bundesaerztekammer.de/themen/medizin-und-ethik/wissenschaftlicher-beirat/stellungnahmen-richtlinien-jahresberichte/haemotherapie-transfusionsmedizin
- 44 Rühl H, Bein G, Sachs UJH. Transfusion-associated graft-versus-host disease. Transfus Med Rev 2009; 23: 62-71
- 45 Saito-Benz M, Bennington K, Gray CL. et al. Effects of freshly irradiated vs irradiated and stored red blood cell transfusion on cerebral oxygenation in preterm infants: a randomized clinical trial. JAMA Pediatr 2022; 176: e220152
- 46 Hall TL, Barnes A, Miller JR. et al. Neonatal mortality following transfusion of red cells with high plasma potassium levels. Transfusion 1993; 33: 606-609
- 47 Meli A, Linger R, Stevens-Hernandez CJ. et al. The compound effect of irradiation and familial pseudohyperkalemia on potassium leak from red blood cells. Transfusion 2022; 62: 2587-2595
- 48 Yamada C, Edelson MF, Lee AC. et al. Transfusion-associated hyperkalemia in pediatric population: Analyses for risk factors and recommendations. Transfusion 2022; 62: 2503-2514
- 49 Meli A, McAndrew M, Frary A. et al. Familial pseudohyperkalemia induces significantly higher levels of extracellular potassium in early storage of red cell concentrates without affecting other standard measures of quality: A case control and allele frequency study. Transfusion 2021; 61: 2439-2449
- 50 Dunbar NM. Does ABO and RhD matching matter for platelet transfusion. Hematology Am Soc Hematol Educ Program 2020; 2020: 512-517
- 51 Cardigan R, New HV, Estcourt L. et al. International forum on policies and practice for transfusion of ABO and RhD non-identical platelets: summary. Vox Sang 2022; 117: 136-144
- 52 Miserre L, Wienzek-Lischka S, Mann A. et al. ABO incompatibility between the mother and fetus does not protect against anti-human platelet antigen-1a immunization by pregnancy. J Clin Med 2022; 11
- 53 Shanwell A, Andersson TM-L, Rostgaard K. et al. Post-transfusion mortality among recipients of ABO-compatible but non-identical plasma. Vox Sang 2009; 96: 316-323
- 54 Franz AR, Engel C, Bassler D. et al. Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants: the ETTNO randomized clinical trial. JAMA 2020; 324: 560-570
- 55 Kirpalani H, Bell EF, Hintz SR. et al. Higher or lower hemoglobin transfusion thresholds for preterm infants. N Engl J Med 2020; 383: 2639-2651
- 56 Wang P, Wang X, Deng H. et al. Restrictive versus liberal transfusion thresholds in very low birth weight infants: A systematic review with meta-analysis. PLoS One 2021; 16: e0256810
- 57 Benavides A, Bell EF, Georgieff MK. et al. Sex-specific cytokine responses and neurocognitive outcome after blood transfusions in preterm infants. Pediatr Res 2022; 91: 947-954
- 58 Maheshwari A, Patel RM, Christensen RD. Anemia, red blood cell transfusions, and necrotizing enterocolitis. Semin Pediatr Surg 2018; 27: 47-51
- 59 Patel RM, Knezevic A, Shenvi N. et al. Association of red blood cell transfusion, anemia, and necrotizing enterocolitis in very low-birth-weight infants. JAMA 2016; 315: 889-897
- 60 Curley A, Stanworth SJ, Willoughby K. et al. Randomized trial of platelet-transfusion thresholds in neonates. N Engl J Med 2019; 380: 242-251
- 61 Patel RM, Hendrickson JE, Nellis ME. et al. Variation in neonatal transfusion practice. J Pediatr 2021; 235: 92-99.e4
- 62 Berséus O, Boman K, Nessen SC. et al. Risks of hemolysis due to anti-A and anti-B caused by the transfusion of blood or blood components containing ABO-incompatible plasma. Transfusion 2013; 53: 114S-123S