RSS-Feed abonnieren
DOI: 10.1055/a-1624-0951
Canine pyoderma: mecA persists autogenous bacterin formulation from meticillin-resistant Staphylococcus pseudintermedius (MRSP) and S. aureus (MRSA)
Pyodermie beim Hund: mecA bleibt bei Herstellung autogener Bakterine aus Meticillin-resistentem Staphylococcus pseudintermedius (MRSP) und S. aureus (MRSA) erhaltenAbstract
Objective Autogenous Staphylococcus pseudintermedius bacterins can reduce prescribing of antimicrobials in the management of canine recurrent pyoderma. However, increasing prevalence of meticillin-resistant, mecA-positive S. pseudintermedius (MRSP) raises concern over dispersal of mecA through bacterin therapy. We investigated the presence and integrity of mecA in bacterin formulations after manufacturing.
Material and methods Twenty clinical isolates (12 MRSP, 7 MR-S. aureus, 1 meticillin-susceptible SP) were investigated. Pellets from overnight growth were washed 3 times with 0.5 % phenol saline, followed by addition of 0.1 ml 10 % formal-saline to 10 ml phenol-saline. Sterility was confirmed, and DNA extracted using both a standard genomic extraction kit and one recommended for formalin-fixed tissue samples (FFPE). The presence of mecA was determined after PCR and its integrity examined in 5 randomly selected samples after sequencing.
Results In all bacterins from meticillin-resistant isolates, mecA was detected following FFPE extraction; products aligned fully to a reported mecA sequence. After standard DNA extraction, mecA was seen in 16/19 samples.
Conclusion Persistence of mecA in MRSP bacterins suggests that dispersal of this important resistance mediator through therapy may be possible. While the ability of skin bacteria to uptake naked DNA remains unclear, it seems prudent to only formulate autogenous bacterins from mecA-negative S. pseudintermedius to avoid unnecessary spread of mecA.
Zusammenfassung
Ziel der Studie Autogene Staphylococcus pseudintermedius-Bakterine (Autovakzinen) können helfen, die Verschreibung von Antibiotika in der Therapie rezidivierender Pyodermien des Hundes zu reduzieren. Die Zunahme von Infektionen mit Meticillin-resistenten, mecA-positiven Staphylococcus pseudintermedius (MRSP) ist besorgniserregend, da eine Bakterintherapie möglicherweise zur Verbreitung von mecA beitragen kann. Wir untersuchten daher das Auftreten und die Integrität von mecA in Autovakzinen nach der Herstellung.
Material und Methoden Zwanzig klinische Isolate (12 MRSP, 7 MR-S. aureus, 1 Meticillin-empfindlicher SP) wurden untersucht. Zellpellets wurden 3-mal mit 0,5 %iger Phenol-Kochsalzlösung gewaschen, danach folgte eine Zugabe von 0,1 ml 10 %iger Formalin-Kochsalzlösung zu 10 ml Phenol-Kochsalzlösung. Sterilität wurde bestätigt und DNA mit einem standardisierten genomischen Extraktionskit sowie einem weiteren für formalinfixiertes Gewebe (FFPE) extrahiert. Die Präsenz von mecA wurde mittels PCR bestimmt und seine Integrität in 5 zufällig ausgewählten Proben nach Sequenzierung untersucht.
Ergebnisse In allen Bakterinen aus Meticillin-resistenten Isolaten ließ sich mecA nach FFPE-Extraktion nachweisen. Die Produkte wurden alle mit einem beschriebenen mecA abgeglichen. Nach einer Standard-DNA-Extraktion fand sich mecA in 16/19 Proben.
Klinische Relevanz Das Verbleiben von mecA in MRSP-Bakterinen weist auf die Möglichkeit einer Verbreitung dieses wichtigen Resistenzmediators durch eine Bakterintherapie hin. Solange die Fähigkeit von Hautbakterien, nackte DNA aufzunehmen, unklar ist, sollten autogene Bakterine nur aus mecA-negativen S. pseudintermedius hergestellt werden, um das Risiko einer Verbreitung von mecA zu vermeiden.
Schlüsselwörter
Antibiotikaresistenz - superfizielle Pyodermie - rezidivierend - Phenol - Formalin - DNAPublikationsverlauf
Eingereicht: 05. November 2020
Angenommen: 18. Mai 2021
Artikel online veröffentlicht:
03. Dezember 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Summers JF, Hendricks A, Brodbelt DC. Prescribing practices of primary-care veterinary practitioners in dogs diagnosed with bacterial pyoderma. BMC Vet Res 2014; 10: 240
- 2 Loeffler A, Lloyd DH. What has changed in canine pyoderma? A narrative review. Vet J 2018; 235: 73-82
- 3 Morris DO, Loeffler A, Davis MF. et al. Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: diagnosis, therapeutic considerations and preventative measures: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 2017; 28: 304-e69
- 4 Curtis CF, Lamport AI, Lloyd DH. Masked, controlled study to investigate the efficacy of a Staphylococcus intermedius autogenous bacterin for the control of canine idiopathic recurrent superficial pyoderma. Vet Dermatol 2006; 17: 163-168
- 5 Wilson A, Allers N, Lloyd DH. et al. Reduced antimicrobial prescribing during autogenous staphylococcal bacterin therapy: a retrospective study in dogs with pyoderma. Vet Rec 2019; 184: 739
- 6 Redi D, Raffaelli CS, Rossetti B. et al. Staphylococcus aureus vaccine preclinical and clinical development: current state of the art. New Microbiol 2018; 41 (03) 208-213
- 7 Helander KG. Kinetic studies of formaldehyde binding in tissue. Biotech Histochem 1994; 69: 177-179
- 8 Clark DP, Pazdernik NJ. eds. Gene transfer among Gram positive bacteria. In: Molecular Biology. 2nd ed. Academic Cell Update Edition. Elsevier; 2013: 801-804
- 9 Clark SM, Loeffler A, Bond R. Susceptibility in vitro of canine methicillin-resistant and -susceptible staphylococcal isolates to fusidic acid, chlorhexidine and miconazole: opportunities for topical therapy of canine superficial pyoderma. J Antimicrob Chemother 2015; 70: 2048-2052
- 10 McCarthy AJ, Harrison EM, Stanczak-Mrozek K. et al. Genomic insights into the rapid emergence and evolution of MDR in Staphylococcus pseudintermedius . J Antimicrob Chemother 2015; 70: 997-1007
- 11 Soares Magalhães RJ, Loeffler A, Lindsay J. et al. Risk factors for methicillin-resistant Staphylococcus aureus (MRSA) infection in dogs and cats: a case-control study. Vet Res 2010; 41: 55
- 12 Brakstad OG, Maeland JA, Tveten Y. Multiplex polymerase chain reaction for detection of genes for Staphylococcus aureus thermonuclease and methicillin resistance and correlation with oxacillin resistance. APMIS 1993; 101: 681-688
- 13 Gill SR, Fouts DE, Archer GL. et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 2005; 187: 2426-2438
- 14 Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 2009; 41: 95-98
- 15 Zhang Z, Schwartz S, Wagner L. et al. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000; 7: 203-11
- 16 Li W, Cowley A, Uludag M. et al. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 2015; 45: W580-584
- 17 Hühns M, Röpenack P, Erbersdobler A. Molecular and Immunohistochemical Characterization of Historical Long-Term Preserved Fixed Tissues from Different Human Organs. PLoS One 2015; 10: e0135297
- 18 Ito T, Katayama Y, Asada K. et al. Structural comparison of three types of staphylococcal cassette chromosome mecintegrated in the chromosome in methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother 2001; 45: 1323-1336
- 19 Worthing KA, Schwendener S, Perreten V. et al. Characterization of staphylococcal cassette chromosome mec elements from methicillin-resistant Staphylococcus pseudintermedius infections in Australian animals. mSphere 2018; 7: e00491-18
- 20 Nakatsuji T, Chiang HI, Jiang SB. et al. The microbiome extends to subepidermal compartments of normal skin. Nat Commun 2013; 4: 1431
- 21 García-Fonticoba R, Ferrer L, Francino O. et al. The microbiota of the surface, dermis and subcutaneous tissue of dog skin. Animal Microbiome 2020; 2 (01) 34
- 22 Miragaia M. Factors contributing to the evolution of mecA-mediated β-lactam resistance in staphylococci: Update and new insights from Whole Genome Sequencing (WGS). Front Microbiol 2018; 9: 2723
- 23 Strain AJ. The uptake and fate of exogenous cellular DNA in mammalian cells. Dev Biol (Basel) 2006; 123: 23-73
- 24 Lindsay JA. Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int J Med Microbiol 2014; 304: 103-109
- 25 DeBoer DJ, Moriello KA, Thomas CB. et al. Evaluation of a commercial staphylococcal bacterin for management of idiopathic recurrent superficial pyoderma in dogs. Am J Vet Res 1990; 51: 636-639