Subscribe to RSS
DOI: 10.1055/a-1624-5095
Dietary recommendations for persons with type 2 diabetes mellitus

Preface
This practice guideline is aimed at all professional groups caring for people with type 2 diabetes mellitus (T2Dm). In addition to the multifaceted aspects of nutrition in diabetes, there is a particular call for individualization of therapy, counseling, empowerment, and diabetes self-management [1] [2] [3]. Therefore, the Nutrition Committee of the DDG has set the goal to compile practice guidelines on nutrition as target group-specific as possible with the highest available evidence. In doing so, it is considered necessary to treatment forms separately presentation since the therapeutic significance of nutrition differs significantly in each case and must be seen against the background of different drug therapy components.
T2Dm is characterized by a progressive course in terms of β-cell insufficiency, which progresses at different rates in different individuals [4] [5] [6] [7]. Against this background, patients with T2Dm have both quite different characteristics and treatment regimens [8].
For patients with special life circumstances, e. g., sarcopenia and need for long-term care, diets must be designed taking strong consideration of personal preferences and with an emphasis on meeting protein requirements.
Overall, as a result, nutritional therapy needs to be highly individualized to realize its full potential.
The option of individualized nutritional counseling, including via telemedicine, should therefore be used more widely and intensively in people with T2Dm. The general goals are to promote balanced eating habits, provide training on appropriate portion sizes, and address individual dietary needs while maintaining enjoyment of food and providing practical tools for meal planning. Individualized nutrition counseling sessions include evidence-based topics that should be provided by qualified and appropriately certified nutrition professionals (dietitian, nutritionist or ecotrophologist).
The nutritional therapy plan must also be coordinated and continuously aligned with the overall management strategy, including medications administered, physical activity, etc.
In addition, people with prediabetes and excess weight/obesity should be referred to an intensive lifestyle intervention program that includes individualized goal-setting components, as defined, for example, by the S3 Guideline Prevention and Therapy of Obesity (S3-Leitlinie Prävention und Therapie der Adipositas). Since this service is not yet a standard benefit of the statutory health insurance, at minimum individualized nutrition counseling should be provided with partial cost coverage according to § 43 German Social Security Code (SGB).
Another important recommendation is the referral of adults with diabetes to comprehensive diabetes self-management training and support (Diabetes-Selbstmanagementschulung und -unterstützung - DSMES) according to national standards.
This practice guideline represents the summary and evaluation of the literature by the Nutrition Committee of the DDG on selected nutritional aspects in the management of T2Dm. Regular updating and, if necessary, supplementation is planned. In doing so, the evidence - if available - was assessed in the context of literature research based on systematic reviews or meta-analyses. Original papers were also used for topics without the availability of such reviews.
Publication History
Article published online:
31 March 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Beck J, Greenwood DA, Blanton L. et al. 2017 National Standards for Diabetes Self-Management Education and Support. Diabetes care 2017; 40: 1409-1419
- 2 Evert AB, Dennison M, Gardner CD. et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes care 2019; 42: 731-754
- 3 https://www.deutsche-diabetes-gesellschaft.de/politik/stellungnahmen/stellungnahme-des-ausschuss-ernaehrung-der-ddg-zum-consensusreport-nutrition-therapy-for-adults-with-diabetes-or-prediabetes Ausschuss Ernährung der DDG. Stellungnahme des Ausschuss Ernährung der DDG zum Consensus Report: Nutrition Therapy for Adults with Diabetes or Prediabetes: [Evert AB et al. Diabetes Care 2019;42:731-54.] 2019
- 4 DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes care 1992; 15: 318-368
- 5 DeFronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes care 2013; 36: S127-S138
- 6
Lencioni C,
Lupi R,
Del Prato S.
Beta-cell failure in type 2 diabetes mellitus. Curr Diab Rep 2008; 8: 179-184
MissingFormLabel
- 7
[Anonymous].
U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type
II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group. Diabetes
1995; 44: 1249-1258
MissingFormLabel
- 8
Zaharia OP,
Strassburger K,
Strom A.
et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset
diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol 2019; 7: 684-694
MissingFormLabel
- 9
Kodama S,
Horikawa C,
Fujihara K.
et al. Quantitative relationship between body weight gain in adulthood and incident
type 2 diabetes: a meta-analysis. Obes Rev 2014; 15: 202-214
MissingFormLabel
- 10 Wing RR, Lang W, Wadden TA. et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes care 2011; 34: 1481-1486
- 11 Steven S, Hollingsworth KG, Al-Mrabeh A. et al. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes care 2016; 39: 808-815
- 12 Jazet IM, Pijl H, Frölich M. et al. Factors predicting the blood glucose lowering effect of a 30-day very low calorie diet in obese Type 2 diabetic patients. Diabetic medicine: a journal of the British Diabetic Association 2005; 22: 52-55
- 13 Lean MEJ, Leslie WS, Barnes AC. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, clusterrandomised trial. The Lancet 2018; 391: 541-551
- 14
Bangalore S,
Fayyad R,
DeMicco DA.
et al. Body Weight Variability and Cardiovascular Outcomes in Patients With Type 2
Diabetes Mellitus. Circ Cardiovasc Qual Outcomes 2018; 11: e004724
MissingFormLabel
- 15 Yeboah P, Hsu FC, Bertoni AG. et al. Body Mass Index, Change in Weight, Body Weight Variability and Outcomes in Type 2 Diabetes Mellitus (from the ACCORD Trial). The American journal of cardiology 2019; 123: 576-581
- 16
Pagidipati NJ,
Zheng Y,
Green JB.
et al. Association of obesity with cardiovascular outcomes in patients with type 2
diabetes and cardiovascular disease: Insights from TECOS. Am Heart J 2020; 219: 47-57
MissingFormLabel
- 17
Bodegard J,
Sundström J,
Svennblad B.
et al. Changes in body mass index following newly diagnosed type 2 diabetes and risk
of
cardiovascular mortality: a cohort study of 8486 primary-care patients. Diabetes Metab
2013; 39: 306-313
MissingFormLabel
- 18
Weinheimer EM,
Sands LP,
Campbell WW.
A systematic review of the separate and combined effects of energy restriction
and exercise on fatfree mass in middle-aged and older adults: implications for
sarcopenic obesity. Nutr Rev 2010; 68: 375-388
MissingFormLabel
- 19
Zaccardi F,
Dhalwani NN,
Papamargaritis D.
et al. Nonlinear association of BMI with all-cause and cardiovascular mortality in
type
2 diabetes mellitus: a systematic review and meta-analysis of 414587
participants in prospective studies. Diabetologia 2017; 60: 240-248
MissingFormLabel
- 20
Salehidoost R,
Mansouri A,
Amini M.
et al. Body mass index and the all-cause mortality rate in patients with type 2
diabetes mellitus. Acta Diabetol 2018; 55: 569-577
MissingFormLabel
- 21 Hainer V, Aldhoon-Hainerová I. Obesity paradox does exist. Diabetes care 2013; 36: S276-S281
- 22 Murphy RA, Reinders I, Garcia ME. et al. Adipose tissue, muscle, and function: potential mediators of associations between body weight and mortality in older adults with type 2 diabetes. Diabetes care 2014; 37: 3213-3219
- 23
Bales CW,
Porter Starr KN.
Obesity Interventions for Older Adults: Diet as a Determinant of Physical
Function. Adv Nutr 2018; 9: 151-159
MissingFormLabel
- 24 Uusitupa M, Khan TA, Viguiliouk E. et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019; 11
- 25
Raben A,
Vestentoft PS,
Brand-Miller J.
et al. The PREVIEW intervention study: Results from a 3-year randomized 2 × 2
factorial multinational trial investigating the role of protein, glycaemic index
and physical activity for prevention of type 2 diabetes. Diabetes Obes Metab 2021;
23: 324-337
MissingFormLabel
- 26
Gregg EW,
Chen H,
Wagenknecht LE.
et al. Association of an intensive lifestyle intervention with remission of type 2
diabetes. JAMA 2012; 308: 2489-2496
MissingFormLabel
- 27
Anderson JW,
Konz EC,
Frederich RC.
et al. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin
Nutr 2001; 74: 579-584
MissingFormLabel
- 28 Bundesgesundheitsministerium 2015. Telemedizin. Im Internet (Stand: 09.04.2021) https://www.bundesgesundheitsministerium.de/service/begriffe-von-a-z/t/telemedizin.html
- 29
Su D,
McBride C,
Zhou J.
et al. Does nutritional counseling in telemedicine improve treatment outcomes for
diabetes? A systematic review and meta-analysis of results from 92 studies. J Telemed
Telecare 2016; 22: 333-347
MissingFormLabel
- 30 Kempf K, Altpeter B, Berger J. et al. Efficacy of the Telemedical Lifestyle intervention Program TeLiPro in Advanced Stages of Type 2 Diabetes: A Randomized Controlled Trial. Diabetes care 2017; 40: 863-871
- 31
Belalcazar LM,
Haffner SM,
Lang W.
et al. Lifestyle intervention and/or statins for the reduction of C-reactive
protein in type 2 diabetes: from the look AHEAD study. Obesity (Silver Spring) 2013;
21: 944-950
MissingFormLabel
- 32 Colquitt JL, Pickett K, Loveman E. et al. Surgery for weight loss in adults. Cochrane Database Syst Rev 2014;
- 33
Patel KV,
Bahnson JL,
Gaussoin SA.
et al. Association of Baseline and Longitudinal Changes in Body Composition Measures
With Risk of Heart Failure and Myocardial Infarction in Type 2 Diabetes:
Findings From the Look AHEAD Trial. Circulation 2020; 142: 2420-2430
MissingFormLabel
- 34
Franz MJ,
Boucher JL,
Rutten-Ramos S.
et al. Lifestyle weight-loss intervention outcomes in overweight and obese adults
with
type 2 diabetes: a systematic review and meta-analysis of randomized clinical
trials. J Acad Nutr Diet 2015; 115: 1447-1463
MissingFormLabel
- 35
Murgatroyd PR,
Goldberg GR,
Leahy FE.
et al. Effects of inactivity and diet composition on human energy balance. Int J Obes
Relat Metab Disord 1999; 23: 1269-1275
MissingFormLabel
- 36
Stubbs RJ,
Sepp A,
Hughes DA.
et al. The effect of graded levels of exercise on energy intake and balance in
free-living women. Int J Obes Relat Metab Disord 2002; 26: 866-869
MissingFormLabel
- 37
Granados K,
Stephens BR,
Malin SK.
et al. Appetite regulation in response to sitting and energy imbalance. Appl Physiol
Nutr Metab 2012; 37: 323-333
MissingFormLabel
- 38
Hägele FA,
Büsing F,
Nas A.
et al. Appetite Control Is Improved by Acute Increases in Energy Turnover at Different
Levels of Energy Balance. J Clin Endocrinol Metab 2019; 104: 4481-4491
MissingFormLabel
- 39
Douglas JA,
King JA,
Clayton DJ.
et al. Acute effects of exercise on appetite, ad libitum energy intake and
appetite-regulatory hormones in lean and overweight/obese men and
women. Int J Obes (Lond) 2017; 41: 1737-1744
MissingFormLabel
- 40
Savikj M,
Zierath JR.
Train like an athlete: applying exercise interventions to manage type 2
diabetes. Diabetologia 2020; 63: 1491-1499
MissingFormLabel
- 41
Büsing F,
Hägele FA,
Nas A.
et al. Impact of energy turnover on the regulation of glucose homeostasis in healthy
subjects. Nutr Diabetes 2019; 9: 22
MissingFormLabel
- 42
Larsen JJ,
Dela F,
Kjaer M.
et al. The effect of moderate exercise on postprandial glucose homeostasis in NIDDM
patients. Diabetologia 1997; 40: 447-453
MissingFormLabel
- 43
Heden TD,
Winn NC,
Mari A.
et al. Postdinner resistance exercise improves postprandial risk factors more
effectively than predinner resistance exercise in patients with type 2
diabetes. J Appl Physiol (1985) 2015; 118: 624-634
MissingFormLabel
- 44
Reynolds AN,
Mann JI,
Williams S.
et al. Advice to walk after meals is more effective for lowering postprandial glycaemia
in type 2 diabetes mellitus than advice that does not specify timing: a
randomised crossover study. Diabetologia 2016; 59: 2572-2578
MissingFormLabel
- 45
Gaudet-Savard T,
Ferland A,
Broderick TL.
et al. Safety and magnitude of changes in blood glucose levels following exercise
performed in the fasted and the postprandial state in men with type 2
diabetes. Eur J Cardiovasc Prev Rehabil 2007; 14: 831-836
MissingFormLabel
- 46 DiPietro L, Gribok A, Stevens MS. et al. Three 15-min bouts of moderate postmeal walking significantly improves 24-h glycemic control in older people at risk for impaired glucose tolerance. Diabetes care 2013; 36: 3262-3268
- 47
Seidelmann SB,
Claggett B,
Cheng S.
et al. Dietary carbohydrate intake and mortality: a prospective cohort study and
meta-analysis. Lancet Public Health 2018; 3: e419-e428
MissingFormLabel
- 48 Davies MJ, D’Alessio DA, Fradkin J. et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes care 2018; 41: 2669-2701
- 49
Schwingshackl L,
Chaimani A,
Hoffmann G.
et al. A network meta-analysis on the comparative efficacy of different dietary
approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur J Epidemiol
2018; 33: 157-170
MissingFormLabel
- 50
Schwingshackl L,
Hoffmann G,
Iqbal K.
et al. Food groups and intermediate disease markers: a systematic review and network
meta-analysis of randomized trials. Am J Clin Nutr 2018; 108: 576-586
MissingFormLabel
- 51
Neuenschwander M,
Ballon A,
Weber KS.
et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses
of
prospective observational studies. BMJ 2019; 366: l2368
MissingFormLabel
- 52
Ge L,
Sadeghirad B,
Ball GDC.
et al. Comparison of dietary macronutrient patterns of 14 popular named dietary
programmes for weight and cardiovascular risk factor reduction in adults:
systematic review and network meta-analysis of randomised trials. BMJ 2020; 369: m696
MissingFormLabel
- 53
Goldenberg JZ,
Day A,
Brinkworth GD.
et al. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes
remission: systematic review and meta-analysis of published and unpublished
randomized trial data. BMJ 2021; 372: m4743
MissingFormLabel
- 54
Schwingshackl L,
Nitschke K,
Zähringer J.
et al. Impact of Meal Frequency on Anthropometric Outcomes: A Systematic Review and
Network Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2020; 11: 1108-1122
MissingFormLabel
- 55 Della Corte KW, Perrar I, Penczynski KJ. et al. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-Analysis of Intervention Studies. Nutrients 2018; 10
- 56
Schwingshackl L,
Chaimani A,
Schwedhelm C.
et al. Comparative effects of different dietary approaches on blood pressure in
hypertensive and pre-hypertensive patients: A systematic review and network
meta-analysis. Crit Rev Food Sci Nutr 2019; 59: 2674-2687
MissingFormLabel
- 57 Thom G, Messow CM, Leslie WS. et al. Predictors of type 2 diabetes remission in the Diabetes Remission Clinical Trial (DiRECT). Diabetic medicine: a journal of the British Diabetic Association 2020; e14395
- 58
de Souza RJ,
Mente A,
Maroleanu A.
et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause
mortality, cardiovascular disease, and type 2 diabetes: systematic review and
meta-analysis of observational studies. BMJ 2015; 351: h3978
MissingFormLabel
- 59
Astrup A,
Magkos F,
Bier DM.
et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based
Recommendations: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 76: 844-857
MissingFormLabel
- 60
Pimpin L,
Wu JHY,
Haskelberg H.
et al. Is Butter Back? A Systematic Review and Meta-Analysis of Butter Consumption
and
Risk of Cardiovascular Disease, Diabetes, and Total Mortality. PLoS One 2016; 11:
e0158118
MissingFormLabel
- 61
Benatar JR,
Sidhu K,
Stewart RAH.
Effects of high and low fat dairy food on cardio-metabolic risk factors: a
meta-analysis of randomized studies. PLoS One 2013; 8: e76480
MissingFormLabel
- 62
Hooper L,
Abdelhamid AS,
Jimoh OF.
et al. Effects of total fat intake on body fatness in adults. Cochrane Database Syst
Rev 2020; 6: CD013636
MissingFormLabel
- 63
Hooper L,
Martin N,
Jimoh OF.
et al. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database
Syst Rev 2020; 8: CD011737
MissingFormLabel
- 64 Belalcazar LM, Reboussin DM, Haffner SM. et al. A 1-year lifestyle intervention for weight loss in individuals with type 2 diabetes reduces high C-reactive protein levels and identifies metabolic predictors of change: from the Look AHEAD (Action for Health in Diabetes) study. Diabetes care 2010; 33: 2297-2303
- 65
Lu M,
Wan Y,
Yang B.
et al. Effects of low-fat compared with high-fat diet on cardiometabolic indicators
in
people with overweight and obesity without overt metabolic disturbance: a
systematic review and metaanalysis of randomised controlled trials. Br J Nutr 2018;
119: 96-108
MissingFormLabel
- 66
Wu JHY,
Marklund M,
Imamura F.
et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis
of
individual-level data for 39 740 adults from 20 prospective cohort studies. Lancet
Diabetes Endocrinol 2017; 5: 965-974
MissingFormLabel
- 67
Li J,
Guasch-Ferré M,
Li Y.
et al. Dietary intake and biomarkers of linoleic acid and mortality: systematic review
and meta-analysis of prospective cohort studies. Am J Clin Nutr 2020; 112: 150-167
MissingFormLabel
- 68
Pan A,
Chen M,
Chowdhury R.
et al. α-Linolenic acid and risk of cardiovascular disease: a systematic review
and meta-analysis. Am J Clin Nutr 2012; 96: 1262-1273
MissingFormLabel
- 69
Abdelhamid AS,
Martin N,
Bridges C.
et al. Polyunsaturated fatty acids for the primary and secondary prevention of
cardiovascular disease. Cochrane Database Syst Rev 2018; 11: CD012345
MissingFormLabel
- 70
Abdelhamid AS,
Brown TJ,
Brainard JS.
et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular
disease. Cochrane Database Syst Rev 2020; 3: CD003177
MissingFormLabel
- 71
Brown TJ,
Brainard J,
Song F.
et al. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and
treatment of type 2 diabetes mellitus: systematic review and meta-analysis of
randomised controlled trials. BMJ 2019; 366: l4697
MissingFormLabel
- 72 Qian F, Korat AA, Malik V. et al. Metabolic Effects of Monounsaturated Fatty Acid-Enriched Diets Compared With Carbohydrate or Polyunsaturated Fatty Acid-Enriched Diets in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes care 2016; 39: 1448-1457
- 73
Jovanovski E,
de Castro Ruiz Marques A,
Li D.
et al. Effect of high-carbohydrate or high-monounsaturated fatty acid diets on blood
pressure: a systematic review and meta-analysis of randomized controlled
trials. Nutr Rev 2019; 77: 19-31
MissingFormLabel
- 74
Zhang YY,
Liu W,
Zhao TY.
et al. Efficacy of Omega-3 Polyunsaturated Fatty Acids Supplementation in Managing
Overweight and Obesity: A Meta-Analysis of Randomized Clinical Trials. J Nutr Health
Aging 2017; 21: 187-192
MissingFormLabel
- 75
Lin N,
Shi JJ,
Li YM.
et al What is the impact of n-3 PUFAs on inflammation markers in Type 2 diabetic
mellitus populations?: a systematic review and meta-analysis of randomized
controlled trials. Lipids Health Dis 2016; 15: 133
MissingFormLabel
- 76
Reis CEG,
Landim KC,
Nunes ACS.
et al. Safety in the hypertriglyceridemia treatment with N-3 polyunsaturated fatty
acids on glucose metabolism in subjects with type 2 diabetes mellitus. Nutr Hosp 2014;
31: 570-576
MissingFormLabel
- 77
Gao L,
Cao J,
Mao Q.
et al. Influence of omega-3 polyunsaturated fatty acid-supplementation on platelet
aggregation in humans: a meta-analysis of randomized controlled trials. Atherosclerosis
2013; 226: 328-334
MissingFormLabel
- 78
He XX,
Wu XL,
Chen RP.
et al. Effectiveness of Omega-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty
Liver Disease: A Meta-Analysis of Randomized Controlled Trials. PLoS One 2016; 11:
e0162368
MissingFormLabel
- 79
Li N,
Yue H,
Jia M.
et al. Effect of low-ratio n-6/n-3 PUFA on blood glucose: a meta-analysis. Food Funct
2019; 10: 4557-4565
MissingFormLabel
- 80
Wanders AJ,
Blom WAM,
Zock PL.
et al. Plant-derived polyunsaturated fatty acids and markers of glucose metabolism
and
insulin resistance: a meta-analysis of randomized controlled feeding trials. BMJ Open
Diabetes Res Care 2019; 7: e000585
MissingFormLabel
- 81
Abbott KA,
Burrows TL,
Thota RN.
et al. Do ω-3 PUFAs affect insulin resistance in a sex-specific manner? A
systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr
2016; 104: 1470-1484
MissingFormLabel
- 82
Jovanovski E,
Li D,
Thanh Ho HV.
et al. The effect of alpha-linolenic acid on glycemic control in individuals with
type
2 diabetes: A systematic review and meta-analysis of randomized controlled
clinical trials. Medicine (Baltimore) 2017; 96: e6531
MissingFormLabel
- 83
Faris MAI,
Jahrami H,
BaHammam A.
et al. A systematic review, meta-analysis, and meta-regression of the impact of diurnal
intermittent fasting during Ramadan on glucometabolic markers in healthy
subjects. Diabetes Res Clin Pract 2020; 165: 108226
MissingFormLabel
- 84
Mirmiran P,
Bahadoran Z,
Gaeini Z.
et al. Effects of Ramadan intermittent fasting on lipid and lipoprotein parameters:
An
updated meta-analysis. Nutr Metab Cardiovasc Dis 2019; 29: 906-915
MissingFormLabel
- 85 Fernando HA, Zibellini J, Harris RA. et al. Effect of Ramadan Fasting on Weight and Body Composition in Healthy Non-Athlete Adults: A Systematic Review and Meta-Analysis. Nutrients 2019; 11
- 86 Horne BD, May HT, Anderson JL. et al. Usefulness of routine periodic fasting to lower risk of coronary artery disease in patients undergoing coronary angiography. The American journal of cardiology 2008; 102: 814-819
- 87 Horne BD, Muhlestein JB, May HT. et al. Relation of routine, periodic fasting to risk of diabetes mellitus, and coronary artery disease in patients undergoing coronary angiography. The American journal of cardiology 2012; 109: 1558-1562
- 88
Schwingshackl L,
Zähringer J,
Nitschke K.
et al. Impact of intermittent energy restriction on anthropometric outcomes and
intermediate disease markers in patients with overweight and obesity: systematic
review and meta-analyses. Crit Rev Food Sci Nutr 2021; 61: 1293-1304
MissingFormLabel
- 89
Park J,
Seo YG,
Paek YJ.
et al. Effect of alternate-day fasting on obesity and cardiometabolic risk: A
systematic review and meta-analysis. Metabolism 2020; 111: 154336
MissingFormLabel
- 90
Harris L,
Hamilton S,
Azevedo LB.
et al. Intermittent fasting interventions for treatment of overweight and obesity
in
adults: a systematic review and meta-analysis. JBI Database System Rev Implement Rep
2018; 16: 507-547
MissingFormLabel
- 91
Seimon RV,
Roekenes JA,
Zibellini J.
et al. Do intermittent diets provide physiological benefits over continuous diets
for
weight loss? A systematic review of clinical trials. Mol Cell Endocrinol 2015; 418:
153-172
MissingFormLabel
- 92
Horne BD,
Muhlestein JB,
Anderson JL.
Health effects of intermittent fasting: hormesis or harm? A systematic
review. Am J Clin Nutr 2015; 102: 464-470
MissingFormLabel
- 93
Borgundvaag E,
Mak J,
Kramer CK.
Metabolic Impact of Intermittent Fasting in Patients With Type 2 Diabetes
Mellitus: A Systematic Review and Meta-analysis of Interventional Studies. J Clin
Endocrinol Metab 2021; 106: 902-911
MissingFormLabel
- 94 Parr EB, Devlin BL, Lim KHC. et al. Time-Restricted Eating as a Nutrition Strategy for Individuals with Type 2 Diabetes: A Feasibility Study. Nutrients 2020; 12
- 95
Carter S,
Clifton PM,
Keogh JB.
The effects of intermittent compared to continuous energy restriction on
glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes Res Clin Pract
2016; 122: 106-112
MissingFormLabel
- 96
Carter S,
Clifton PM,
Keogh JB.
The effect of intermittent compared with continuous energy restriction on
glycaemic control in patients with type 2 diabetes: 24-month follow-up of a
randomised noninferiority trial. Diabetes Res Clin Pract 2019; 151: 11-19
MissingFormLabel
- 97 Corley BT, Carroll RW, Hall RM. et al. Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabetic medicine: a journal of the British Diabetic Association 2018; 35: 588-594
- 98
Henry RR,
Wiest-Kent TA,
Scheaffer L.
et al. Metabolic consequences of very-low-calorie diet therapy in obese
non-insulin-dependent diabetic and nondiabetic subjects. Diabetes 1986; 35: 155-164
MissingFormLabel
- 99
Amatruda JM,
Richeson JF,
Welle SL.
et al. The safety and efficacy of a controlled low-energy
(‘very-low-calorie’) diet in the treatment of
noninsulin-dependent diabetes and obesity. Arch Intern Med 1988; 148: 873-877
MissingFormLabel
- 100
Rotella CM,
Cresci B,
Mannucci E.
et al. Short cycles of very low calorie diet in the therapy of obese type II diabetes
mellitus. J Endocrinol Invest 1994; 17: 171-179
MissingFormLabel
- 101 Dhindsa P, Scott AR, Donnelly R. Metabolic and cardiovascular effects of very-low-calorie diet therapy in obese patients with Type 2 diabetes in secondary failure: outcomes after 1 year. Diabetic medicine: a journal of the British Diabetic Association 2003; 20: 319-324
- 102
Lean MEJ,
Leslie WS,
Barnes AC.
et al. Durability of a primary care-led weight-management intervention for remission
of
type 2 diabetes: 2- year results of the DiRECT open-label, cluster-randomised
trial. Lancet Diabetes Endocrinol 2019; 7: 344-355
MissingFormLabel
- 103 Maggio CA, Pi-Sunyer FX. Obesity and type 2 diabetes. Endocrinol Metab Clin North Am 2003; 32: 805-822 viii
- 104 Wolf AM, Colditz GA. Current estimates of the economic cost of obesity in the United States. Obes Res 1998; 6: 97-106
- 105
Colditz GA,
Willett WC,
Rotnitzky A.
et al. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern
Med 1995; 122: 481-486
MissingFormLabel
- 106 Anderson JW, Kendall CWC, Jenkins DJA. Importance of weight management in type 2 diabetes: review with meta-analysis of clinical studies. J Am Coll Nutr 2003; 22: 331-339
- 107
Leslie WS,
Taylor R,
Harris L.
et al. Weight losses with low-energy formula diets in obese patients with and without
type 2 diabetes: systematic review and meta-analysis. Int J Obes (Lond) 2017; 41:
96-101
MissingFormLabel
- 108
McCombie L,
Brosnahan N,
Ross H.
et al. Filling the intervention gap: service evaluation of an intensive nonsurgical
weight management programme for severe and complex obesity. J Hum Nutr Diet 2019;
32: 329-337
MissingFormLabel
- 109
Jazet IM,
de Craen AJ,
van Schie EM.
et al. Sustained beneficial metabolic effects 18 months after a 30-day very low calorie
diet in severely obese, insulin-treated patients with type 2 diabetes. Diabetes Res
Clin Pract 2007; 77: 70-76
MissingFormLabel
- 110
Kempf K,
Schloot NC,
Gärtner B.
et al. Meal replacement reduces insulin requirement, HbA1c and weight long-term in
type
2 diabetes patients with 100 U insulin per day. J Hum Nutr Diet 2014; 27: 21-27
MissingFormLabel
- 111 Kempf K, Röhling M, Niedermeier K. et al. Individualized Meal Replacement Therapy Improves Clinically Relevant Long-Term Glycemic Control in Poorly Controlled Type 2 Diabetes Patients. Nutrients 2018; 10
- 112
Taylor R,
Leslie WS,
Barnes AC.
et al. Clinical and metabolic features of the randomised controlled Diabetes Remission
Clinical Trial (DiRECT) cohort. Diabetologia 2018; 61: 589-598
MissingFormLabel
- 113
Halle M,
Röhling M,
Banzer W.
et al. Meal replacement by formula diet reduces weight more than a lifestyle
intervention alone in patients with overweight or obesity and accompanied
cardiovascular risk factors-the ACOORH trial. Eur J Clin Nutr 2021; 75: 661-669
MissingFormLabel
- 114 Röhling M, Kempf K, Banzer W. et al. Prediabetes Conversion to Normoglycemia Is Superior Adding a Low-Carbohydrate and Energy Deficit Formula Diet to Lifestyle Intervention-A 12-Month Subanalysis of the ACOORH Trial. Nutrients 2020; 12
- 115
Holman RR,
Paul SK,
Bethel MA.
et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J
Med 2008; 359: 1577-1589
MissingFormLabel
- 116
Haslacher H,
Fallmann H,
Waldhäusl C.
et al. Type 2 diabetes care: Improvement by standardization at a diabetes
rehabilitation clinic. An observational report. PLoS One 2019; 14: e0226132
MissingFormLabel
- 117
Paul SK,
Shaw JE,
Montvida O.
et al. Weight gain in insulin-treated patients by body mass index category at treatment
initiation: new evidence from real-world data in patients with type 2
diabetes. Diabetes Obes Metab 2016; 18: 1244-1252
MissingFormLabel
- 118 [Anonymous]. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2020. Diabetes care 2020; 43: S48-S65
- 119 Dyson PA, Twenefour D, Breen C. et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabetic medicine: a journal of the British Diabetic Association 2018; 35: 541-547
- 120
Dworatzek PD,
Arcudi K,
Gougeon R.
et al. Nutrition therapy. Can J Diabetes 2013; 37: S45-S55
MissingFormLabel
- 121
Hallberg SJ,
Dockter NE,
Kushner JA.
et al. Improving the scientific rigour of nutritional recommendations for adults with
type 2 diabetes: A comprehensive review of the American Diabetes Association
guidelinerecommended eating patterns. Diabetes Obes Metab 2019; 21: 1769-1779
MissingFormLabel
- 122
Salas-Salvadó J,
Becerra-Tomás N,
Papandreou C.
et al. Dietary Patterns Emphasizing the Consumption of Plant Foods in the Management
of
Type 2 Diabetes: A Narrative Review. Adv Nutr 2019; 10: S320-S331
MissingFormLabel
- 123
Viguiliouk E,
Kendall CW,
Kahleová H.
et al. Effect of vegetarian dietary patterns on cardiometabolic risk factors in
diabetes: A systematic review and meta-analysis of randomized controlled
trials. Clin Nutr 2019; 38: 1133-1145
MissingFormLabel
- 124
Papamichou D,
Panagiotakos DB,
Itsiopoulos C.
Dietary patterns and management of type 2 diabetes: A systematic review of
randomised clinical trials. Nutr Metab Cardiovasc Dis 2019; 29: 531-543
MissingFormLabel
- 125
Ohlsson B.
An Okinawan-based Nordic diet improves glucose and lipid metabolism in health
and type 2 diabetes, in alignment with changes in the endocrine profile, whereas
zonulin levels are elevated. Exp Ther Med 2019; 17: 2883-2893
MissingFormLabel
- 126
Daneshzad E,
Emami S,
Darooghegi Mofrad M.
et al. Association of modified Nordic diet with cardiovascular risk factors among
type
2 diabetes patients: a cross-sectional study. J Cardiovasc Thorac Res 2018; 10: 153-161
MissingFormLabel
- 127
Via MA,
Mechanick JI.
Nutrition in Type 2 Diabetes and the Metabolic Syndrome. Med Clin North Am 2016; 100:
1285-1302
MissingFormLabel
- 128 Porrata-Maury C, Hernández-Triana M, Ruiz-Álvarez V. et al. Ma-Pi 2 macrobiotic diet and type 2 diabetes mellitus: pooled analysis of shortterm intervention studies. Diabetes Metab Res Rev 2014; 30: 55-66
- 129
Garvey WT,
Mechanick JI,
Brett EM.
et al. American Association of Clinical Endocrinologists and American College of
Endocrinology Comprehensive CLINICAL Practice Guidelines for Medical Care of
Patients with Obesity. Endocr Pract 2016; 22: 1-203
MissingFormLabel
- 130
Ajala O,
English P,
Pinkney J.
Systematic review and meta-analysis of different dietary approaches to the
management of type 2 diabetes. Am J Clin Nutr 2013; 97: 505-516
MissingFormLabel
- 131
Huo R,
Du T,
Xu Y.
et al. Effects of Mediterranean-style diet on glycemic control, weight loss and
cardiovascular risk factors among type 2 diabetes individuals: a
meta-analysis. Eur J Clin Nutr 2015; 69: 1200-1208
MissingFormLabel
- 132
Pan B,
Wu Y,
Yang Q.
et al. The impact of major dietary patterns on glycemic control, cardiovascular risk
factors, and weight loss in patients with type 2 diabetes: A network
meta-analysis. J Evid Based Med 2019; 12: 29-39
MissingFormLabel
- 133
Johannesen CO,
Dale HF,
Jensen C.
et al. Effects of Plant-Based Diets on Outcomes Related to Glucose Metabolism: A
Systematic Review. Diabetes Metab Syndr Obes 2020; 13: 2811-2822
MissingFormLabel
- 134
Toumpanakis A,
Turnbull T,
Alba-Barba I.
Effectiveness of plant-based diets in promoting well-being in the management of
type 2 diabetes: a systematic review. BMJ Open Diabetes Res Care 2018; 6: e000534
MissingFormLabel
- 135
Tran E,
Dale HF,
Jensen C.
et al. Effects of Plant-Based Diets on Weight Status: A Systematic Review. Diabetes
Metab Syndr Obes 2020; 13: 3433-3448
MissingFormLabel
- 136 Medawar E, Huhn S, Villringer A. et al. The effects of plant-based diets on the body and the brain: a systematic review. Transl Psychiatry 2019; 9: 226
- 137
Esposito K,
Maiorino MI,
Bellastella G.
et al. A journey into a Mediterranean diet and type 2 diabetes: a systematic review
with meta-analyses. BMJ Open 2015; 5: e008222
MissingFormLabel
- 138
Carter P,
Achana F,
Troughton J.
et al. A Mediterranean diet improves HbA1c but not fasting blood glucose compared
to
alternative dietary strategies: a network meta-analysis. J Hum Nutr Diet 2014; 27:
280-297
MissingFormLabel
- 139
Emadian A,
Andrews RC,
England CY.
et al. The effect of macronutrients on glycaemic control: a systematic review of
dietary randomised controlled trials in overweight and obese adults with type 2
diabetes in which there was no difference in weight loss between treatment
groups. Br J Nutr 2015; 114: 1656-1666
MissingFormLabel
- 140 Kahleova H, Salas-Salvadó J, Rahelić D. et al. Dietary Patterns and Cardiometabolic Outcomes in Diabetes: A Summary of Systematic Reviews and Meta-Analyses. Nutrients 2019; 11
- 141 DDG https://www.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/01_Die_DDG/03_Ausschuesse/02_Ernaehrung/2015-057-025l_S3_Diabetes_mellitus_Empfehlungen_Proteinzufuhr_2015-10.pdfStand: 06.07.2021
- 142 Pfeiffer AFH, Pedersen E, Schwab U. et al. The Effects of Different Quantities and Qualities of Protein Intake in People with Diabetes Mellitus. Nutrients 2020; 12
- 143
Mittendorfer B,
Klein S,
Fontana L.
A word of caution against excessive protein intake. Nat Rev Endocrinol 2020; 16: 59-66
MissingFormLabel
- 144
Labonte CC,
Chevalier S,
Marliss EB.
et al. Effect of 10% dietary protein intake on whole body protein kinetics in
type 2 diabetic adults. Clin Nutr 2015; 34: 1115-1121
MissingFormLabel
- 145
Markova M,
Hornemann S,
Sucher S.
et al. Rate of appearance of amino acids after a meal regulates insulin and glucagon
secretion in patients with type 2 diabetes: a randomized clinical trial. Am J Clin
Nutr 2018; 108: 279-291
MissingFormLabel
- 146
Volkert D.
Aktuelle ESPEN-Leitlinie Klinische Ernährung und Hydration in der
Geriatrie. Dtsch Med Wochenschr 2020; 145: 1306-1314
MissingFormLabel
- 147
Song M,
Fung TT,
Hu FB.
et al. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific
Mortality. JAMA Intern Med 2016; 176: 1453-1463
MissingFormLabel
- 148
Ye J,
Yu Q,
Mai W.
et al. Dietary protein intake and subsequent risk of type 2 diabetes: a dose-response
meta-analysis of prospective cohort studies. Acta Diabetol 2019; 56: 851-870
MissingFormLabel
- 149
Vernooij RWM,
Zeraatkar D,
Han MA.
et al. Patterns of Red and Processed Meat Consumption and Risk for Cardiometabolic
and
Cancer Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann Intern
Med 2019; 171: 732-741
MissingFormLabel
- 150 Vogtschmidt YD, Raben A, Faber I. et al. Is protein the forgotten ingredient: Effects of higher compared to lower protein diets on cardiometabolic risk factors. A systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 2021;
- 151
Clifton PM,
Condo D,
Keogh JB.
Long term weight maintenance after advice to consume low carbohydrate, higher
protein diets-a systematic review and meta analysis. Nutr Metab Cardiovasc Dis 2014;
24: 224-235
MissingFormLabel
- 152
Hahn D,
Hodson EM,
Fouque D.
Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database
Syst Rev 2020; 10: CD001892
MissingFormLabel
- 153
Ikizler TA,
Burrowes JD,
Byham-Gray LD.
et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am J Kidney
Dis 2020; 76: S1-S107
MissingFormLabel
- 154
Menon V,
Kopple JD,
Wang X.
et al. Effect of a very low-protein diet on outcomes: long-term follow-up of the
Modification of Diet in Renal Disease (MDRD) Study. Am J Kidney Dis 2009; 53: 208-217
MissingFormLabel
- 155 Jiang Z. Effect of restricted protein diet supplemented with keto analogues in end-stage renal disease: a systematic review and meta-analysis. International urology and nephrology 2017; 1-8
- 156
Fiaccadori E,
Sabatino A,
Barazzoni R.
et al. ESPEN guideline on clinical nutrition in hospitalized patients with acute or
chronic kidney disease. Clin Nutr 2021; 40: 1644-1668
MissingFormLabel
- 157
Dong JY,
Zhang ZL,
Wang PY.
et al. Effects of high-protein diets on body weight, glycaemic control, blood lipids
and blood pressure in type 2 diabetes: meta-analysis of randomised controlled
trials. Br J Nutr 2013; 110: 781-789
MissingFormLabel
- 158
[Anonymous].
Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert
Consultation. FAO Food Nutr Pap 1998; 66: 1-140
MissingFormLabel
- 159
Wolever TMS.
Personalized nutrition by prediction of glycaemic responses: fact or
fantasy?. Eur J Clin Nutr 2016; 70: 411-413
MissingFormLabel
- 160
Berry SE,
Valdes AM,
Drew DA.
et al. Human postprandial responses to food and potential for precision nutrition.
Nat Med 2020; 26: 964-973
MissingFormLabel
- 161
Zeevi D,
Korem T,
Zmora N.
et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015; 163:
1079-1094
MissingFormLabel
- 162 Jung CH, Choi KM. Impact of High-Carbohydrate Diet on Metabolic Parameters in Patients with Type 2 Diabetes. Nutrients 2017; 9
- 163
Livesey G,
Taylor R,
Livesey H.
et al. Is there a dose-response relation of dietary glycemic load to risk of type
2
diabetes? Meta-analysis of prospective cohort studies. Am J Clin Nutr 2013; 97: 584-596
MissingFormLabel
- 164
Livesey G,
Livesey H.
Coronary Heart Disease and Dietary Carbohydrate, Glycemic Index, and Glycemic
Load: Dose-Response Meta-analyses of Prospective Cohort Studies. Mayo Clin Proc Innov
Qual Outcomes 2019; 3: 52-69
MissingFormLabel
- 165
Thomas DE,
Elliott EJ.
The use of low-glycaemic index diets in diabetes control. Br J Nutr 2010; 104: 797-802
MissingFormLabel
- 166 Xu B, Fu J, Qiao Y. et al. Higher intake of microbiota-accessible carbohydrates and improved cardiometabolic risk factors: a meta-analysis and umbrella review of dietary management in patients with type 2 diabetes. Am J Clin Nutr 2021;
- 167
Jenkins DJA,
Kendall CWC,
McKeown-Eyssen G.
et al. Effect of a lowglycemic index or a high-cereal fiber diet on type 2 diabetes:
a
randomized trial. JAMA 2008; 300: 2742-2753
MissingFormLabel
- 168
Holub I,
Gostner A,
Hessdörfer S.
et al. Improved metabolic control after 12-week dietary intervention with low glycaemic
isomalt in patients with type 2 diabetes mellitus. Horm Metab Res 2009; 41: 886-892
MissingFormLabel
- 169 Brand-Miller J, Hayne S, Petocz P. et al. Low-glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes care 2003; 26: 2261-2267
- 170 Ojo O, Ojo OO, Adebowale F. et al. The Effect of Dietary Glycaemic Index on Glycaemia in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2018; 10
- 171
Franz MJ,
MacLeod J,
Evert A.
et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1
and
Type 2 Diabetes in Adults: Systematic Review of Evidence for Medical Nutrition
Therapy Effectiveness and Recommendations for Integration into the Nutrition
Care Process. J Acad Nutr Diet 2017; 117: 1659-1679
MissingFormLabel
- 172 Vega-López S, Venn BJ, Slavin JL. Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease. Nutrients 2018; 10
- 173
Jenkins DJA,
Dehghan M,
Mente A.
et al. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N
Engl J Med 2021; 384: 1312-1322
MissingFormLabel
- 174 Coutinho M, Gerstein HC, Wang Y. et al. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95783 individuals followed for 12.4 years. Diabetes care 1999; 22: 233-240
- 175
Levitan EB,
Song Y,
Ford ES.
et al. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A
meta-analysis of prospective studies. Arch Intern Med 2004; 164: 2147-2155
MissingFormLabel
- 176
Siri PW,
Krauss RM.
Influence of dietary carbohydrate and fat on LDL and HDL particle
distributions. Curr Atheroscler Rep 2005; 7: 455-459
MissingFormLabel
- 177
Aune D,
Norat T,
Romundstad P.
et al. Whole grain and refined grain consumption and the risk of type 2 diabetes:
a
systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol
2013; 28: 845-858
MissingFormLabel
- 178
[Anonymous].
Dietary fibre and incidence of type 2 diabetes in eight European countries: the
EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 2015;
58: 1394-1408
MissingFormLabel
- 179
Kim Y,
Je Y.
Dietary fibre intake and mortality from cardiovascular disease and all cancers:
A meta-analysis of prospective cohort studies. Arch Cardiovasc Dis 2016; 109: 39-54
MissingFormLabel
- 180
Reynolds AN,
Akerman AP,
Mann J.
Dietary fibre and whole grains in diabetes management: Systematic review and
meta-analyses. PLoS Med 2020; 17: e1003053
MissingFormLabel
- 181
Da Silva Borges D,
Fernandes R,
Thives Mello A.
et al. Prebiotics may reduce serum concentrations of C-reactive protein and ghrelin
in
overweight and obese adults: a systematic review and meta-analysis. Nutr Rev 2020;
78: 235-248
MissingFormLabel
- 182
Reynolds A,
Mann J,
Cummings J.
et al. Carbohydrate quality and human health: a series of systematic reviews and
meta-analyses. Lancet 2019; 393: 434-445
MissingFormLabel
- 183
Musa-Veloso K,
Poon T,
Harkness LS.
et al. The effects of whole-grain compared with refined wheat, rice, and rye on the
postprandial blood glucose response: a systematic review and meta-analysis of
randomized controlled trials. Am J Clin Nutr 2018; 108: 759-774
MissingFormLabel
- 184
Wang W,
Li J,
Chen X.
et al. Whole grain food diet slightly reduces cardiovascular risks in
obese/overweight adults: a systematic review and meta-analysis. BMC Cardiovasc Disord
2020; 20: 82
MissingFormLabel
- 185
Weickert MO,
Roden M,
Isken F.
et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein
content on insulin sensitivity in overweight humans. Am J Clin Nutr 2011; 94: 459-471
MissingFormLabel
- 186
Honsek C,
Kabisch S,
Kemper M.
et al. Fibre supplementation for the prevention of type 2 diabetes and improvement
of
glucose metabolism: the randomised controlled Optimal Fibre Trial (OptiFiT). Diabetologia
2018; 61: 1295-1305
MissingFormLabel
- 187 Kabisch S, Meyer NMT, Honsek C. et al. Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients 2019; 11
- 188
Hjorth MF,
Ritz C,
Blaak EE.
et al. Pretreatment fasting plasma glucose and insulin modify dietary weight loss
success: results from 3 randomized clinical trials. Am J Clin Nutr 2017; 106: 499-505
MissingFormLabel
- 189
Xiao Z,
Chen H,
Zhang Y.
et al. The effect of psyllium consumption on weight, body mass index, lipid profile,
and glucose metabolism in diabetic patients: A systematic review and
dose-response meta-analysis of randomized controlled trials. Phytother Res 2020; 34:
1237-1247
MissingFormLabel
- 190
Wang L,
Yang H,
Huang H.
et al. Inulin-type fructans supplementation improves glycemic control for the
prediabetes and type 2 diabetes populations: results from a GRADE-assessed
systematic review and doseresponse meta-analysis of 33 randomized controlled
trials. J Transl Med 2019; 17: 410
MissingFormLabel
- 191
Rao M,
Gao C,
Xu L.
et al. Effect of Inulin-Type Carbohydrates on Insulin Resistance in Patients with
Type
2 Diabetes and Obesity: A Systematic Review and Meta-Analysis. J Diabetes Res 2019;
2019: 5101423
MissingFormLabel
- 192
Darooghegi Mofrad M,
Mozaffari H,
Mousavi SM.
et al. The effects of psyllium supplementation on body weight, body mass index and
waist circumference in adults: A systematic review and dose-response
metaanalysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 60: 859-872
MissingFormLabel
- 193
Rahmani J,
Miri A,
Černevičiūtė R.
et al. Effects of cereal beta-glucan consumption on body weight, body mass index,
waist
circumference and total energy intake: A meta-analysis of randomized controlled
trials. Complement Ther Med 2019; 43: 131-139
MissingFormLabel
- 194
Ho HVT,
Sievenpiper JL,
Zurbau A.
et al. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and
apoB for CVD risk reduction: a systematic review and meta-analysis of
randomised-controlled trials. Br J Nutr 2016; 116: 1369-1382
MissingFormLabel
- 195
Jovanovski E,
Yashpal S,
Komishon A.
et al. Effect of psyllium (Plantago ovata) fiber on LDL cholesterol and alternative
lipid targets, non-HDL cholesterol and apolipoprotein B: a systematic review and
meta-analysis of randomized controlled trials. Am J Clin Nutr 2018; 108: 922-932
MissingFormLabel
- 196 Brum J, Ramsey D, McRorie J. et al. Meta-Analysis of Usefulness of Psyllium Fiber as Adjuvant Antilipid Therapy to Enhance Cholesterol Lowering Efficacy of Statins. The American journal of cardiology 2018; 122: 1169-1174
- 197
Ho HVT,
Jovanovski E,
Zurbau A.
et al. A systematic review and metaanalysis of randomized controlled trials of the
effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and
the new lipid targets non-HDL cholesterol and apolipoprotein B. Am J Clin Nutr 2017;
105: 1239-1247
MissingFormLabel
- 198
Pittler MH,
Ernst E.
Guar gum for body weight reduction: meta-analysis of randomized trials. Am J Med 2001;
110: 724-730
MissingFormLabel
- 199
Khan K,
Jovanovski E,
Ho HVT.
et al. The effect of viscous soluble fiber on blood pressure: A systematic review
and
meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2018; 28:
3-13
MissingFormLabel
- 200
Thinggaard M,
Jacobsen R,
Jeune B.
et al. Is the relationship between BMI and mortality increasingly U-shaped with
advancing age? A 10-year follow-up of persons aged 70-95 years. J Gerontol A Biol
Sci Med Sci 2010; 65: 526-531
MissingFormLabel
- 201
Guigoz Y,
Vellas B.
Malnutrition in the elderly: the Mini Nutritional Assessment (MNA). Ther Umsch 1997;
54: 345-350
MissingFormLabel
- 202
Rubenstein LZ,
Harker JO,
Salvà A.
et al. Screening for undernutrition in geriatric practice: developing the short-form
mini-nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci 2001; 56: M366-M372
MissingFormLabel
- 203 [Anonym]. S2k-Leitlinie Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Alter. 2. Auflage 2018 – AWMF-Register-Nr. 057-017. Diabetologie und Stoffwechsel 2018; 13: 423-489
- 204
Volkert D,
Bauer J,
Frühwald T.
et al. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin
(DGEM) in Zusammenarbeit mit der GESKES, der AKE und der DGG Klinische
Ernährung in der Geriatrie. Aktuelle Ernährungsmedizin 2013; 38: e1-e48
MissingFormLabel
- 205 Zeyfang A, Wernecke J, Bahrmann A. Diabetes mellitus im Alter. Diabetologie 2020; 15: S112-S119
- 206 Şat S, Aydınkoç-Tuzcu K, Berger F. et al. Diabetes und Migration. Diabetologie und Stoffwechsel 2019; 14: S306-S317
- 207 Diker O, Deniz T, Çetinkaya A. History of Turkish Cuisine Culture and the Influence of the Balkans. Journal of Humanities And Social Science 2016; 10: 1-6
- 208 Schmid B. Ernährung und Migration [Zugl.: München, Techn. Univ., Diss., 2003]. München: Utz, Wiss; c; 2003
- 209 Magni P, Bier DM, Pecorelli S. et al. Perspective: Improving Nutritional Guidelines for Sustainable Health Policies: Current Status and Perspectives. Adv Nutr 2017; 8: 532-545
- 210 Praxistool zur Ernährung. Orientierungshilfe für die Diabetesberatung nach geografischen Räumen. Im Internet (Stand: 15.07.2021) https://migration.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/01_Die_DDG/05_Arbeitsgemeinschaften/AG_Migranten/Microsite/200417_Ernaehrungstoo_DDG-GB19-Einleger_04.pdf
- 211 European Commission. Health Promotion and Disease Prevention Knowledge Gateway: Sugars and Sweeteners. Im Internet (Stand: 27.01.2021) https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/sugars-sweeteners
- 212 Scientific Advisory Committee on Nutrition. Carbohydrates and Health report, 2015. Im Internet (Stand: 26.01.2021) https://www.gov.uk/government/publications/
- 213
McKeown NM,
Dashti HS,
Ma J.
et al. Sugar-sweetened beverage intake associations with fasting glucose and insulin
concentrations are not modified by selected genetic variants in a ChREBP-FGF21
pathway: a meta-analysis. Diabetologia 2018; 61: 317-330
MissingFormLabel
- 214
Evans RA,
Frese M,
Romero J.
et al. Chronic fructose substitution for glucose or sucrose in food or beverages has
little effect on fasting blood glucose, insulin, or triglycerides: a systematic
review and metaanalysis. Am J Clin Nutr 2017; 106: 519-529
MissingFormLabel
- 215
Evans RA,
Frese M,
Romero J.
et al. Fructose replacement of glucose or sucrose in food or beverages lowers
postprandial glucose and insulin without raising triglycerides: a systematic
review and meta-analysis. Am J Clin Nutr 2017; 106: 506-518
MissingFormLabel
- 216
Keller A,
Heitmann BL,
Olsen N.
Sugar-sweetened beverages, vascular risk factors and events: a systematic
literature review. Public Health Nutr 2015; 18: 1145-1154
MissingFormLabel
- 217
Huang C,
Huang J,
Tian Y.
et al. Sugar sweetened beverages consumption and risk of coronary heart disease: a
meta-analysis of prospective studies. Atherosclerosis 2014; 234: 11-16
MissingFormLabel
- 218
Narain A,
Kwok CS,
Mamas MA.
Soft drinks and sweetened beverages and the risk of cardiovascular disease and
mortality: a systematic review and meta-analysis. Int J Clin Pract 2016; 70: 791-805
MissingFormLabel
- 219
Cheungpasitporn W,
Thongprayoon C,
O’Corragain OA.
et al. Associations of sugar-sweetened and artificially sweetened soda with chronic
kidney disease: a systematic review and meta-analysis. Nephrology (Carlton) 2014;
19: 791-797
MissingFormLabel
- 220 Chen H, Wang J, Li Z. et al. Consumption of Sugar-Sweetened Beverages Has a Dose-Dependent Effect on the Risk of Non-Alcoholic Fatty Liver Disease: An Updated Systematic Review and Dose-Response Meta-Analysis. Int J Environ Res Public Health 2019; 16
- 221
Asgari-Taee F,
Zerafati-Shoae N,
Dehghani M.
et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty
liver disease: a systematic review and meta-analysis. Eur J Nutr 2019; 58: 1759-1769
MissingFormLabel
- 222
Khan TA,
Sievenpiper JL.
Controversies about sugars: results from systematic reviews and meta-analyses on
obesity, cardiometabolic disease and diabetes. Eur J Nutr 2016; 55: 25-43
MissingFormLabel
- 223
Choo VL,
Viguiliouk E,
Blanco Mejia S.
et al. Food sources of fructosecontaining sugars and glycaemic control: systematic
review and metaanalysis of controlled intervention studies. BMJ 2018; 363: k4644
MissingFormLabel
- 224
Semnani-Azad Z,
Khan TA,
Blanco Mejia S.
et al. Association of Major Food Sources of Fructose-Containing Sugars With Incident
Metabolic Syndrome: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3:
e209993
MissingFormLabel
- 225 Bechthold A. Vollwertig essen und trinken nach den 10 Regeln der DGE. Bonn: Deutsche Gesellschaft für Ernährung e. V. (DGE); 2018
- 226
Wu H,
Flint AJ,
Qi Q.
et al. Association between dietary whole grain intake and risk of mortality: two large
prospective studies in US men and women. JAMA Intern Med 2015; 175: 373-384
MissingFormLabel
- 227
Johnsen NF,
Frederiksen K,
Christensen J.
et al. Whole-grain products and whole-grain types are associated with lower all-cause
and causespecific mortality in the Scandinavian HELGA cohort. Br J Nutr 2015; 114:
608-623
MissingFormLabel
- 228
Wei H,
Gao Z,
Liang R.
et al. Whole-grain consumption and the risk of all-cause, CVD and cancer mortality:
a
meta-analysis of prospective cohort studies – CORRIGENDUM. Br J Nutr 2016; 116: 952
MissingFormLabel
- 229
Chen GC,
Tong X,
Xu JY.
et al. Whole-grain intake and total, cardiovascular, and cancer mortality: a systematic
review and meta-analysis of prospective studies. Am J Clin Nutr 2016; 104: 164-172
MissingFormLabel
- 230
Benisi-Kohansal S,
Saneei P,
Salehi-Marzijarani M.
et al. Whole-Grain Intake and Mortality from All Causes, Cardiovascular Disease, and
Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective
Cohort Studies. Adv Nutr 2016; 7: 1052-1065
MissingFormLabel
- 231
Zong G,
Gao A,
Hu FB.
et al. Whole Grain Intake and Mortality From All Causes, Cardiovascular Disease, and
Cancer: A Meta-Analysis of Prospective Cohort Studies. Circulation 2016; 133: 2370-2380
MissingFormLabel
- 232
Aune D,
Keum N,
Giovannucci E.
et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all
cause and cause specific mortality: systematic review and dose-response
meta-analysis of prospective studies. BMJ 2016; 353: i2716
MissingFormLabel
- 233
Aune D.
Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease,
Cancer, and Mortality: A Review of the Evidence. Adv Nutr 2019; 10: S404-S421
MissingFormLabel
- 234
Zhang B,
Zhao Q,
Guo W.
et al. Association of whole grain intake with all-cause, cardiovascular, and cancer
mortality: a systematic review and dose-response meta-analysis from prospective
cohort studies. Eur J Clin Nutr 2018; 72: 57-65
MissingFormLabel
- 235
Jenkins DJ,
Wesson V,
Wolever TM.
et al. Wholemeal versus wholegrain breads: proportion of whole or cracked grain and
the
glycaemic response. BMJ 1988; 297: 958-960
MissingFormLabel
- 236 Reynolds AN, Mann J, Elbalshy M. et al. Wholegrain Particle Size Influences Postprandial Glycemia in Type 2 Diabetes: A Randomized Crossover Study Comparing Four Wholegrain Breads. Diabetes care 2020; 43: 476-479
- 237 Åberg S, Mann J, Neumann S. et al. Whole-Grain Processing and Glycemic Control in Type 2 Diabetes: A Randomized Crossover Trial. Diabetes care 2020; 43: 1717-1723
- 238 Jenkins DJA, Kendall CWC, Augustin LSA. et al. Effect of wheat bran on glycemic control and risk factors for cardiovascular disease in type 2 diabetes. Diabetes care 2002; 25: 1522-1528
- 239
Miller V,
Mente A,
Dehghan M.
et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths
in 18
countries (PURE): a prospective cohort study. Lancet 2017; 390: 2037-2049
MissingFormLabel
- 240
Aune D,
Giovannucci E,
Boffetta P.
et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer
and all-cause mortality-a systematic review and dose-response meta-analysis of
prospective studies. Int J Epidemiol 2017; 46: 1029-1056
MissingFormLabel
- 241
Bechthold A,
Boeing H,
Schwedhelm C.
et al. Food groups and risk of coronary heart disease, stroke and heart failure: A
systematic review and dose-response meta-analysis of prospective studies. Crit Rev
Food Sci Nutr 2019; 59: 1071-1090
MissingFormLabel
- 242
Zhan J,
Liu YJ,
Cai LB.
et al. Fruit and vegetable consumption and risk of cardiovascular disease: A
meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr 2017; 57: 1650-1663
MissingFormLabel
- 243
Willett W,
Rockström J,
Loken B.
et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from
sustainable food systems. Lancet 2019; 393: 447-492
MissingFormLabel
- 244 Barnard ND, Cohen J, Jenkins DJA. et al. A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes. Diabetes care 2006; 29: 1777-1783
- 245
Jenkins DJA,
Kendall CWC,
Augustin LSA.
et al. Effect of legumes as part of a low glycemic index diet on glycemic control
and
cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled
trial. Arch Intern Med 2012; 172: 1653-1660
MissingFormLabel
- 246 Renner B, Arens-Azevêdo U, Watzl B. et al. DGE-Positionspapier zur nachhaltigeren Ernährung. ernährungsumschau 2021; 68: 144-154
- 247
Jannasch F,
Kröger J,
Schulze MB.
Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and
Meta-Analysis of Prospective Studies. J Nutr 2017; 147: 1174-1182
MissingFormLabel
- 248 Wallin A, Di Giuseppe D, Orsini N. et al. Fish consumption, dietary longchain n-3 fatty acids, and risk of type 2 diabetes: systematic review and meta-analysis of prospective studies. Diabetes care 2012; 35: 918-929
- 249 Xun P, He K. Fish Consumption and Incidence of Diabetes: meta-analysis of data from 438000 individuals in 12 independent prospective cohorts with an average 11-year follow-up. Diabetes care 2012; 35: 930-938
- 250
Schwingshackl L,
Hoffmann G,
Lampousi AM.
et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and
meta-analysis of prospective studies. Eur J Epidemiol 2017; 32: 363-375
MissingFormLabel
- 251
Muley A,
Muley P,
Shah MALA.
fatty fish or marine n-3 fatty acids for preventing DM?: a systematic review and
meta-analysis. Curr Diabetes Rev 2014; 10: 158-165
MissingFormLabel
- 252
Schlesinger S,
Neuenschwander M,
Schwedhelm C.
et al. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic
Review and Dose-Response Meta-Analysis of Prospective Studies. Adv Nutr 2019; 10:
205-218
MissingFormLabel
- 253
Micha R,
Shulkin ML,
Peñalvo JL.
et al. Etiologic effects and optimal intakes of foods and nutrients for risk of
cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from
the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS One 2017; 12: e0175149
MissingFormLabel
- 254
Jayedi A,
Shab-Bidar S,
Eimeri S.
et al. Fish consumption and risk of allcause and cardiovascular mortality: a
dose-response meta-analysis of prospective observational studies. Public Health Nutr
2018; 21: 1297-1306
MissingFormLabel
- 255
Abdelhamid AS,
Brown TJ,
Brainard JS.
et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular
disease. Cochrane Database Syst Rev 2018; 11: CD003177
MissingFormLabel
- 256
Hu Y,
Hu FB,
Manson JE.
Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated
Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477
Participants. J Am Heart Assoc 2019; 8: e013543
MissingFormLabel
- 257
Gao H,
Geng T,
Huang T.
et al. Fish oil supplementation and insulin sensitivity: a systematic review and
meta-analysis. Lipids Health Dis 2017; 16: 131
MissingFormLabel
- 258
Chen C,
Yu X,
Shao S.
Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid
Levels in Type 2 Diabetes: A Meta-Analysis. PLoS One 2015; 10: e0139565
MissingFormLabel
- 259 DGE – Deutsche Gesellschaft für Ernährung. Vollwertig essen und trinken nach den 10 Regeln der DGE. Im Internet (Stand: 13.07.2021) https://www.dge.de/ernaehrungspraxis/vollwertige-ernaehrung/10-regeln-der-dge/
- 260
Zeraatkar D,
Han MA,
Guyatt GH.
et al. Red and Processed Meat Consumption and Risk for All-Cause Mortality and
Cardiometabolic Outcomes: A Systematic Review and Meta-analysis of Cohort
Studies. Ann Intern Med 2019; 171: 703-710
MissingFormLabel
- 261
Davidson MH,
Hunninghake D,
Maki KC.
et al. Comparison of the effects of lean red meat vs lean white meat on serum lipid
levels among freeliving persons with hypercholesterolemia: a long-term,
randomized clinical trial. Arch Intern Med 1999; 159: 1331-1338
MissingFormLabel
- 262
Hunninghake DB,
Maki KC,
Kwiterovich PO.
et al. Incorporation of lean red meat into a National Cholesterol Education Program
Step I diet: a long-term, randomized clinical trial in free-living persons with
hypercholesterolemia. J Am Coll Nutr 2000; 19: 351-360
MissingFormLabel
- 263
Bergeron N,
Chiu S,
Williams PT.
et al. Effects of red meat, white meat, and nonmeat protein sources on atherogenic
lipoprotein measures in the context of low compared with high saturated fat
intake: a randomized controlled trial. Am J Clin Nutr 2019; 110: 24-33
MissingFormLabel
- 264
Charlton K,
Walton K,
Batterham M.
et al. Pork and Chicken Meals Similarly Impact on Cognitive Function and Strength
in
Community-Living Older Adults: A Pilot Study. J Nutr Gerontol Geriatr 2016; 35: 124-145
MissingFormLabel
- 265
Murphy KJ,
Parker B,
Dyer KA.
et al. A comparison of regular consumption of fresh lean pork, beef and chicken on
body
composition: a randomized cross-over trial. Nutrients 2014; 6: 682-696
MissingFormLabel
- 266
Murphy KJ,
Thomson RL,
Coates AM.
et al. Effects of eating fresh lean pork on cardiometabolic health parameters. Nutrients
2012; 4: 711-723
MissingFormLabel
- 267
Johnston BC,
Zeraatkar D,
Han MA.
et al. Unprocessed Red Meat and Processed Meat Consumption: Dietary Guideline
Recommendations From the Nutritional Recommendations (NutriRECS) Consortium. Ann Intern
Med 2019; 171: 756-764
MissingFormLabel
- 268
Davis PA,
Yokoyama W.
Cinnamon intake lowers fasting blood glucose: meta-analysis. J Med Food 2011; 14:
884-889
MissingFormLabel
- 269
Akilen R,
Tsiami A,
Devendra D.
et al. Cinnamon in glycaemic control: Systematic review and meta analysis. Clin Nutr
2012; 31: 609-615
MissingFormLabel
- 270 Leach MJ, Kumar S. Cinnamon for diabetes mellitus. Cochrane Database Syst Rev 2012;
- 271
Allen RW,
Schwartzman E,
Baker WL.
et al. Cinnamon use in type 2 diabetes: an updated systematic review and
meta-analysis. Ann Fam Med 2013; 11: 452-459
MissingFormLabel
- 272
Costello RB,
Dwyer JT,
Saldanha L.
et al. Do Cinnamon Supplements Have a Role in Glycemic Control in Type 2 Diabetes?
A
Narrative Review. J Acad Nutr Diet 2016; 116: 1794-1802
MissingFormLabel
- 273
Sierra-Puente D,
Abadi-Alfie S,
Arakanchi-Altaled K.
et al. Cinammon (Cinnamomum Spp.) and Type 2 Diabetes Mellitus. CTNR 2019; 18: 247-255
MissingFormLabel
- 274
Chan CB,
Hashemi Z,
Subhan FB.
The impact of low and no-caloric sweeteners on glucose absorption, incretin
secretion, and glucose tolerance. Appl Physiol Nutr Metab 2017; 42: 793-801
MissingFormLabel
- 275
Brown AW,
Bohan Brown MM,
Onken KL.
et al. Short-term consumption of sucralose, a nonnutritive sweetener, is similar to
water with regard to select markers of hunger signaling and short-term glucose
homeostasis in women. Nutr Res 2011; 31: 882-888
MissingFormLabel
- 276
Ford HE,
Peters V,
Martin NM.
et al. Effects of oral ingestion of sucralose on gut hormone response and appetite
in
healthy normal-weight subjects. Eur J Clin Nutr 2011; 65: 508-513
MissingFormLabel
- 277
Steinert RE,
Frey F,
Töpfer A.
et al. Effects of carbohydrate sugars and artificial sweeteners on appetite and the
secretion of gastrointestinal satiety peptides. Br J Nutr 2011; 105: 1320-1328
MissingFormLabel
- 278
Barriocanal LA,
Palacios M,
Benitez G.
et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners
in humans. A pilot study of repeated exposures in some normotensive and
hypotensive individuals and in Type 1 and Type 2 diabetics. Regul Toxicol Pharmacol
2008; 51: 37-41
MissingFormLabel
- 279 Brown RJ, Walter M, Rother KI. Effects of diet soda on gut hormones in youths with diabetes. Diabetes care 2012; 35: 959-964
- 280
Grotz VL,
Henry RR,
McGill JB.
et al. Lack of effect of sucralose on glucose homeostasis in subjects with type 2
diabetes. J Am Diet Assoc 2003; 103: 1607-1612
MissingFormLabel
- 281
Maki KC,
Curry LL,
Reeves MS.
et al. Chronic consumption of rebaudioside A, a steviol glycoside, in men and women
with type 2 diabetes mellitus. Food Chem Toxicol 2008; 46: S47-S53
MissingFormLabel
- 282
Olalde-Mendoza L,
Moreno-González YE.
Modificación de la glucemia en ayuno en adultos con diabetes mellitus
tipo 2 después de la ingesta de refrescos de cola y de dieta en el
estado de querétaro, México. Arch Latinoam Nutr 2013; 63: 142-147
MissingFormLabel
- 283
Temizkan S,
Deyneli O,
Yasar M.
et al. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of
carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur J Clin
Nutr 2015; 69: 162-166
MissingFormLabel
- 284
Ferrazzano GF,
Cantile T,
Alcidi B.
et al. Is Stevia rebaudiana Bertoni a Non Cariogenic Sweetener? A Review. Molecules
2015; 21: E38
MissingFormLabel
- 285
Prashant GM,
Patil RB,
Nagaraj T.
et al. The antimicrobial activity of the three commercially available intense
sweeteners against common periodontal pathogens: an in vitro study. J Contemp Dent
Pract 2012; 13: 749-752
MissingFormLabel
- 286
Suez J,
Korem T,
Zeevi D.
et al. Artificial sweeteners induce glucose intolerance by altering the gut
microbiota. Nature 2014; 514: 181-186
MissingFormLabel
- 287 EFSA 2013. EFSA schließt vollständige Risikobewertung zu Aspartam ab und kommt zu dem Schluss, dass es in den derzeitigen Expositionsmengen sicher ist. Im Internet (Stand: 01.09.2020) https://www.efsa.europa.eu/de/press/news/131210
- 288 Bundesinstitut für Risikobewertung. Bewertung von Süßstoffen und Zuckeraustauschstoffen. Hintergrundinformation Nr. 025/2014 des BfR vom 1. Juli 2014. Im Internet (Stand: 01.09.2020) www.bfr.bund.de/cm/343/bewertung_von_suessstoffen.pdf
- 289
Bock PM,
Telo GH,
Ramalho R.
et al. The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in
individuals with diabetes: a systematic review and meta-analysis. Diabetologia 2021;
64: 26-41
MissingFormLabel
- 290
Rittiphairoj T,
Pongpirul K,
Janchot K.
et al. Probiotics Contribute to Glycemic Control in Patients with Type 2 Diabetes
Mellitus: A Systematic Review and Meta-Analysis. Adv Nutr 2021; 12: 722-734
MissingFormLabel
- 291
Tao YW,
Gu YL,
Mao XQ.
et al. Effects of probiotics on type II diabetes mellitus: a meta-analysis. J Transl
Med 2020; 18: 30
MissingFormLabel
- 292
Ardeshirlarijani E,
Tabatabaei-Malazy O,
Mohseni S.
et al. Effect of probiotics supplementation on glucose and oxidative stress in type
2
diabetes mellitus: a meta-analysis of randomized trials. Daru 2019; 27: 827-837
MissingFormLabel
- 293
Mahboobi S,
Rahimi F,
Jafarnejad S.
Effects of Prebiotic and Synbiotic Supplementation on Glycaemia and Lipid
Profile in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Adv Pharm
Bull 2018; 8: 565-574
MissingFormLabel
- 294
Akbari V,
Hendijani F.
Effects of probiotic supplementation in patients with type 2 diabetes:
systematic review and meta-analysis. Nutr Rev 2016; 74: 774-784
MissingFormLabel
- 295
Yao K,
Zeng L,
He Q.
et al. Effect of Probiotics on Glucose and Lipid Metabolism in Type 2 Diabetes
Mellitus: A Meta-Analysis of 12 Randomized Controlled Trials. Med Sci Monit 2017;
23: 3044-3053
MissingFormLabel
- 296 Wang C, Zhang C, Li S. et al. Effects of Probiotic Supplementation on Dyslipidemia in Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Foods 2020; 9
- 297
Kasińska MA,
Drzewoski J.
Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol Arch Med Wewn
2015; 125: 803-813
MissingFormLabel
- 298 Palacios T, Vitetta L, Coulson S. et al. Targeting the Intestinal Microbiota to Prevent Type 2 Diabetes and Enhance the Effect of Metformin on Glycaemia: A Randomised Controlled Pilot Study. Nutrients 2020; 12
- 299
Zheng M,
Zhang R,
Tian X.
et al. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic
Resistance. Front Microbiol 2017; 8: 908
MissingFormLabel
- 300
Wong A,
Ngu DYS,
Dan LA.
et al. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr
J 2015; 14: 95
MissingFormLabel
- 301 BgVV – ehemals: Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin. Abschlussbericht der Arbeitsgruppe „Probiotische Mikroorganismenkulturen in Lebensmitteln“ am BgVV. Im Internet (Stand: 13.07.2021) https://mobil.bfr.bund.de/cm/343/probiot.pdf
- 302 de Vrese M. Mikrobiologie, Wirkung und Sicherheit von Probiotika. Monatsschrift Kinderheilkunde 2008; 156: 1063-1069
- 303
Vrieze A,
van Nood E,
Holleman F.
et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity
in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-916.e7
MissingFormLabel
- 304 Simon MC, Strassburger K, Nowotny B. et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes care 2015; 38: 1827-1834
- 305
Tilg H,
Moschen AR.
Microbiota and diabetes: an evolving relationship. Gut 2014; 63: 1513-1521
MissingFormLabel
- 306
Kjems LL,
Holst JJ,
Vølund A.
et al. The influence of GLP-1 on glucosestimulated insulin secretion: effects on
beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003; 52: 380-386
MissingFormLabel
- 307
Karlsson FH,
Tremaroli V,
Nookaew I.
et al. Gut metagenome in European women with normal, impaired and diabetic glucose
control. Nature 2013; 498: 99-103
MissingFormLabel
- 308
Qin J,
Li Y,
Cai Z.
et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature
2012; 490: 55-60
MissingFormLabel
- 309
Larsen N,
Vogensen FK,
van den Berg FWJ.
et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic
adults. PLoS One 2010; 5: e9085
MissingFormLabel
- 310
Wu H,
Esteve E,
Tremaroli V.
et al. Metformin alters the gut microbiome of individuals with treatment-naive type
2
diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017; 23: 850-858
MissingFormLabel
- 311
Forslund K,
Hildebrand F,
Nielsen T.
et al. Corrigendum: Disentangling type 2 diabetes and metformin treatment signatures
in
the human gut microbiota. Nature 2017; 545: 116
MissingFormLabel
- 312
Forslund K,
Hildebrand F,
Nielsen T.
et al. Disentangling type 2 diabetes and metformin treatment signatures in the human
gut microbiota. Nature 2015; 528: 262-266
MissingFormLabel
- 313
Caesar R.
Pharmacologic and Nonpharmacologic Therapies for the Gut Microbiota in Type 2
Diabetes. Can J Diabetes 2019; 43: 224-231
MissingFormLabel
- 314 Evert AB, Boucher JL, Cypress M. et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes care 2014; 37: S120-S143
- 315
Sievenpiper JL,
Chan CB,
Dworatzek PD.
et al. Nutrition Therapy. Can J Diabetes 2018; 42: S64-S79
MissingFormLabel
- 316
Sievenpiper JL,
de Souza RJ,
Mirrahimi A.
et al. Effect of fructose on body weight in controlled feeding trials: a systematic
review and meta-analysis. Ann Intern Med 2012; 156: 291-304
MissingFormLabel
- 317
Ha V,
Sievenpiper JL,
de Souza RJ.
et al. Effect of fructose on blood pressure: a systematic review and meta-analysis
of
controlled feeding trials. Hypertension 2012; 59: 787-795
MissingFormLabel
- 318
Chiavaroli L,
de Souza RJ,
Ha V.
et al. Effect of Fructose on Established Lipid Targets: A Systematic Review and
Meta-Analysis of Controlled Feeding Trials. J Am Heart Assoc 2015; 4: e001700
MissingFormLabel
- 319
Wang X,
Ouyang Y,
Liu J.
et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular
disease, and cancer: systematic review and dose-response meta-analysis of
prospective cohort studies. BMJ 2014; 349: g4490
MissingFormLabel
- 320
Chiu S,
Sievenpiper JL,
de Souza RJ.
et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD):
a
systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr
2014; 68: 416-423
MissingFormLabel
- 321
Wang DD,
Sievenpiper JL,
de Souza RJ.
et al. The effects of fructose intake on serum uric acid vary among controlled dietary
trials. J Nutr 2012; 142: 916-923
MissingFormLabel
- 322 Cozma AI, Sievenpiper JL, de Souza RJ. et al. Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes care 2012; 35: 1611-1620
- 323
Sievenpiper JL,
Chiavaroli L,
de Souza RJ.
et al. ‘Catalytic’ doses of fructose may benefit glycaemic control
without harming cardiometabolic risk factors: a small meta-analysis of
randomised controlled feeding trials. Br J Nutr 2012; 108: 418-423
MissingFormLabel
- 324 Sievenpiper JL, Carleton AJ, Chatha S. et al. Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experimental trials in humans. Diabetes care 2009; 32: 1930-1937
- 325
Chung M,
Ma J,
Patel K.
et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver
disease or indexes of liver health: a systematic review and meta-analysis. Am J Clin
Nutr 2014; 100: 833-849
MissingFormLabel
- 326
Goran MI,
Ulijaszek SJ,
Ventura EE.
High fructose corn syrup and diabetes prevalence: a global perspective. Glob Public
Health 2013; 8: 55-64
MissingFormLabel
- 327
Tsilas CS,
de Souza RJ,
Mejia SB.
et al. Relation of total sugars, fructose and sucrose with incident type 2 diabetes:
a
systematic review and meta-analysis of prospective cohort studies. CMAJ 2017; 189:
E711-E720
MissingFormLabel
- 328
David Wang D,
Sievenpiper JL,
de Souza RJ.
et al. Effect of fructose on postprandial triglycerides: a systematic review and
meta-analysis of controlled feeding trials. Atherosclerosis 2014; 232: 125-133
MissingFormLabel
- 329
Zhang YH,
An T,
Zhang RC.
et al. Very high fructose intake increases serum LDL-cholesterol and total cholesterol:
a meta-analysis of controlled feeding trials. J Nutr 2013; 143: 1391-1398
MissingFormLabel
- 330
Schwingshackl L,
Neuenschwander M,
Hoffmann G.
et al. Dietary sugars and cardiometabolic risk factors: a network meta-analysis on
isocaloric substitution interventions. Am J Clin Nutr 2020; 111: 187-196
MissingFormLabel
- 331 Weber KS, Simon MC, Strassburger K. et al. Habitual Fructose Intake Relates to Insulin Sensitivity and Fatty Liver Index in Recent-Onset Type 2 Diabetes Patients and Individuals without Diabetes. Nutrients 2018; 10
- 332
ter Horst KW,
Schene MR,
Holman R.
et al. Effect of fructose consumption on insulin sensitivity in nondiabetic subjects:
a
systematic review and meta-analysis of diet-intervention trials. Am J Clin Nutr 2016;
104: 1562-1576
MissingFormLabel
- 333 Kulzer B, Albus C, Herpertz S. et al. Psychosoziales und Diabetes. Der Diabetologe 2019; 15: 452-469
- 334
Ahmed AT,
Karter AJ,
Warton EM.
et al. The relationship between alcohol consumption and glycemic control among patients
with diabetes: the Kaiser Permanente Northern California Diabetes Registry. J Gen
Intern Med 2008; 23: 275-282
MissingFormLabel
- 335
Bantle AE,
Thomas W,
Bantle JP.
Metabolic effects of alcohol in the form of wine in persons with type 2 diabetes
mellitus. Metabolism 2008; 57: 241-245
MissingFormLabel
- 336
Avogaro A,
Beltramello P,
Gnudi L.
et al. Alcohol intake impairs glucose counterregulation during acute insulin-induced
hypoglycemia in IDDM patients. Evidence for a critical role of free fatty
acids. Diabetes 1993; 42: 1626-1634
MissingFormLabel
- 337 Turner BC, Jenkins E, Kerr D. et al. The effect of evening alcohol consumption on next-morning glucose control in type 1 diabetes. Diabetes care 2001; 24: 1888-1893
- 338 Richardson T, Weiss M, Thomas P. et al. Day after the night before: influence of evening alcohol on risk of hypoglycemia in patients with type 1 diabetes. Diabetes care 2005; 28: 1801-1802
- 339
Pedersen-Bjergaard U,
Reubsaet JLE,
Nielsen SL.
et al. Psychoactive drugs, alcohol, and severe hypoglycemia in insulin-treated
diabetes: analysis of 141 cases. Am J Med 2005; 118: 307-310
MissingFormLabel
- 340 Frier B, Fisher M. Hrsg Moderators, monitoring and management of hypoglycaemia [101-120]. Chichester: John Wiley & Sons; 2007
- 341 Ahmed AT, Karter AJ, Liu J. Alcohol consumption is inversely associated with adherence to diabetes self-care behaviours. Diabetic medicine: a journal of the British Diabetic Association 2006; 23: 795-802
- 342
Nahas R,
Goguen J.
Natural health products. Can J Diabetes 2013; 37: S97-S99
MissingFormLabel
- 343 Hartweg J, Perera R, Montori V. et al. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev 2008;
- 344
Hartweg J,
Farmer AJ,
Holman RR.
et al. Potenzial impact of omega-3 treatment on cardiovascular disease in type 2
diabetes. Curr Opin Lipidol 2009; 20: 30-38
MissingFormLabel
- 345
O’Mahoney LL,
Matu J,
Price OJ.
et al. Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic
biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized
controlled trials. Cardiovasc Diabetol 2018; 17: 98
MissingFormLabel
- 346
Mirhosseini N,
Vatanparast H,
Mazidi M.
et al. The Effect of Improved Serum 25-Hydroxyvitamin D Status on Glycemic Control
in
Diabetic Patients: A Meta-Analysis. J Clin Endocrinol Metab 2017; 102: 3097-3110
MissingFormLabel
- 347 Li X, Liu Y, Zheng Y. et al. The Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis. Nutrients 2018; 10
- 348
Jafari T,
Fallah AA,
Barani A.
Effects of vitamin D on serum lipid profile in patients with type 2 diabetes: A
meta-analysis of randomized controlled trials. Clin Nutr 2016; 35: 1259-1268
MissingFormLabel
- 349
Mousa A,
Naderpoor N,
Teede H.
et al. Vitamin D supplementation for improvement of chronic low-grade inflammation
in
patients with type 2 diabetes: a systematic review and meta-analysis of
randomized controlled trials. Nutr Rev 2018; 76: 380-394
MissingFormLabel
- 350
Lee KJ,
Lee YJ.
Effects of vitamin D on blood pressure in patients with type 2 diabetes
mellitus. Int J Clin Pharmacol Ther 2016; 54: 233-242
MissingFormLabel
- 351
Yu Y,
Tian L,
Xiao Y.
et al. Effect of Vitamin D Supplementation on Some Inflammatory Biomarkers in Type
2
Diabetes Mellitus Subjects: A Systematic Review and Meta-Analysis of Randomized
Controlled Trials. Ann Nutr Metab 2018; 73: 62-73
MissingFormLabel
- 352
Verma H,
Garg R.
Effect of magnesium supplementation on type 2 diabetes associated cardiovascular
risk factors: a systematic review and meta-analysis. J Hum Nutr Diet 2017; 30: 621-633
MissingFormLabel
- 353 Simental-Mendía LE, Sahebkar A, Rodríguez-Morán M. et al. A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol Res 2016; 111: 272-282
- 354
Asbaghi O,
Hosseini R,
Boozari B.
et al. The Effects of Magnesium Supplementation on Blood Pressure and Obesity Measure
Among Type 2 Diabetes Patient: a Systematic Review and Meta-analysis of
Randomized Controlled Trials. Biol Trace Elem Res 2021; 199: 413-424
MissingFormLabel
- 355
Vincent JB.
Elucidating a biological role for chromium at a molecular level. Acc Chem Res 2000;
33: 503-510
MissingFormLabel
- 356
Asbaghi O,
Fatemeh N,
Mahnaz RK.
et al. Effects of chromium supplementation on glycemic control in patients with type
2
diabetes: a systematic review and meta-analysis of randomized controlled
trials. Pharmacol Res 2020; 161: 105098
MissingFormLabel
- 357
Yin RV,
Phung OJ.
Effect of chromium supplementation on glycated hemoglobin and fasting plasma
glucose in patients with diabetes mellitus. Nutr J 2015; 14: 14
MissingFormLabel
- 358
Suksomboon N,
Poolsup N,
Yuwanakorn A.
Systematic review and meta-analysis of the efficacy and safety of chromium
supplementation in diabetes. J Clin Pharm Ther 2014; 39: 292-306
MissingFormLabel
- 359
Chimienti F.
Zinc, pancreatic islet cell function and diabetes: new insights into an old
story. Nutr Res Rev 2013; 26: 1-11
MissingFormLabel
- 360 de Carvalho GB. Zinc’s role in the glycemic control of patients with type 2 diabetes: a systematic review. BioMetals 2017; 1-12
- 361
Fernández-Cao JC,
Warthon-Medina M,
Hall Moran V.
et al. Dietary zinc intake and whole blood zinc concentration in subjects with type
2
diabetes versus healthy subjects: A systematic review, meta-analysis and
meta-regression. J Trace Elem Med Biol 2018; 49: 241-251
MissingFormLabel
- 362
Wang X,
Wu W,
Zheng W.
et al. Zinc supplementation improves glycemic control for diabetes prevention and
management: a systematic review and meta-analysis of randomized controlled
trials. Am J Clin Nutr 2019; 110: 76-90
MissingFormLabel
- 363
Asbaghi O,
Sadeghian M,
Fouladvand F.
et al. Effects of zinc supplementation on lipid profile in patients with type 2
diabetes mellitus: A systematic review and meta-analysis of randomized
controlled trials. Nutr Metab Cardiovasc Dis 2020; 30: 1260-1271
MissingFormLabel
- 364
Rahimi R,
Nikfar S,
Larijani B.
et al. A review on the role of antioxidants in the management of diabetes and its
complications. Biomed Pharmacother 2005; 59: 365-373
MissingFormLabel
- 365
Ashor AW,
Werner AD,
Lara J.
et al. Effects of vitamin C supplementation on glycaemic control: a systematic review
and meta-analysis of randomised controlled trials. Eur J Clin Nutr 2017; 71: 1371-1380
MissingFormLabel
- 366
Xu R,
Zhang S,
Tao A.
et al. Influence of vitamin E supplementation on glycaemic control: a meta-analysis
of
randomised controlled trials. PLoS One 2014; 9: e95008
MissingFormLabel
- 367
Khodaeian M,
Tabatabaei-Malazy O,
Qorbani M.
et al. Effect of vitamins C and E on insulin resistance in diabetes: a meta-analysis
study. Eur J Clin Invest 2015; 45: 1161-1174
MissingFormLabel
- 368
Montero D,
Walther G,
Stehouwer CDA.
et al. Effect of antioxidant vitamin supplementation on endothelial function in type
2
diabetes mellitus: a systematic review and meta-analysis of randomized
controlled trials. Obes Rev 2014; 15: 107-116
MissingFormLabel
- 369
Tabatabaei-Malazy O,
Ardeshirlarijani E,
Namazi N.
et al. Dietary antioxidative supplements and diabetic retinopathy; a systematic
review. J Diabetes Metab Disord 2019; 18: 705-716
MissingFormLabel
- 370
Jeyaraman MM,
Al-Yousif NSH,
Singh Mann A.
et al. Resveratrol for adults with type 2 diabetes mellitus. Cochrane Database Syst
Rev 2020; 1: CD011919
MissingFormLabel
- 371
Palma-Duran SA,
Vlassopoulos A,
Lean M.
et al. Nutritional intervention and impact of polyphenol on glycohemoglobin (HbA1c)
in
non-diabetic and type 2 diabetic subjects: Systematic review and
meta-analysis. Crit Rev Food Sci Nutr 2017; 57: 975-986
MissingFormLabel
- 372
Fogacci F,
Tocci G,
Presta V.
et al. Effect of resveratrol on blood pressure: A systematic review and meta-analysis
of randomized, controlled, clinical trials. Crit Rev Food Sci Nutr 2019; 59: 1605-1618
MissingFormLabel
- 373 Drzikova B. Haferprodukte mit modifiziertem Gehalt an β-Glucanen und resistenter Stärke und ihre Effekte auf den Gastrointestinaltrakt unter In-vitro- und In-vivo-Bedingungen. 2005 http://opus.kobv.de/ubp/volltexte/205/592/
- 374
He L,
Zhao J,
Huang Y.
et al. The difference between oats and beta-glucan extract intake in the management
of
HbA1c, fasting glucose and insulin sensitivity: ameta-analysis of randomized
controlled trials. Food Funct 2016; 7: 1413-1428
MissingFormLabel
- 375
Abbasi NN,
Purslow PP,
Tosh SM.
et al. Oat β-glucan depresses SGLT1- and GLUT2-mediated glucose transport in
intestinal epithelial cells (IEC-6). Nutr Res 2016; 36: 541-552
MissingFormLabel
- 376
Wang F,
Yu G,
Zhang Y.
et al. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa
L.),
Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare
trifurcatum (L.) Trofim) Proteins. J Agric Food Chem 2015; 63: 9543-9549
MissingFormLabel
- 377
Liu M,
Zhang Y,
Zhang H.
et al. The anti-diabetic activity of oat β-d-glucan in
streptozotocin-nicotinamide induced diabetic mice. Int J Biol Macromol 2016; 91: 1170-1176
MissingFormLabel
- 378
Lammert A,
Kratzsch J,
Selhorst J.
et al. Clinical benefit of a short term dietary oatmeal intervention in patients with
type 2 diabetes and severe insulin resistance: a pilot study. Exp Clin Endocrinol
Diabetes 2008; 116: 132-134
MissingFormLabel
- 379
Delgado G,
Kleber ME,
Krämer BK.
et al. Dietary Intervention with Oatmeal in Patients with uncontrolled Type 2 Diabetes
Mellitus – A Crossover Study. Exp Clin Endocrinol Diabetes 2019; 127: 623-629
MissingFormLabel
- 380
Delgado GE,
Krämer BK,
Scharnagl H.
et al. Bile Acids in Patients with Uncontrolled Type 2 Diabetes Mellitus – The
Effect of Two Days of Oatmeal Treatment. Exp Clin Endocrinol Diabetes 2020; 128: 624-630
MissingFormLabel
- 381
Behall KM,
Scholfield DJ,
Hallfrisch J.
Comparison of hormone and glucose responses of overweight women to barley and
oats. J Am Coll Nutr 2005; 24: 182-188
MissingFormLabel
- 382 Braaten JT, Scott FW, Wood PJ. et al. High beta-glucan oat bran and oat gum reduce postprandial blood glucose and insulin in subjects with and without type 2 diabetes. Diabetic medicine: a journal of the British Diabetic Association 1994; 11: 312-318
- 383
Pick ME,
Hawrysh ZJ,
Gee MI.
et al. Oat bran concentrate bread products improve long-term control of diabetes:
a
pilot study. J Am Diet Assoc 1996; 96: 1254-1261
MissingFormLabel
- 384
Tapola N,
Karvonen H,
Niskanen L.
et al. Glycemic responses of oat bran products in type 2 diabetic patients. Nutr Metab
Cardiovasc Dis 2005; 15: 255-261
MissingFormLabel
- 385 Tappy L, Gügolz E, Würsch P. Effects of breakfast cereals containing various amounts of beta-glucan fibers on plasma glucose and insulin responses in NIDDM subjects. Diabetes care 1996; 19: 831-834
- 386
Wood PJ,
Beer MU,
Butler G.
Evaluation of role of concentration and molecular weight of oat beta-glucan in
determining effect of viscosity on plasma glucose and insulin following an oral
glucose load. Br J Nutr 2000; 84: 19-23
MissingFormLabel
- 387 [Anonym]. Scientific Opinion on the substantiation of health claims related to beta glucans and maintenance or achievement of normal blood glucose concentrations (ID 756, 802, 2935) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFS2 2010; 8
- 388 Amtsblatt der Europäischen Union 2011 L 136/1 vom 25.5.2012 https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:136:0001:0040:DE:PDFStand: 04.07.2021
- 389 Zurbau A, Noronha JC, Khan TA. et al. The effect of oat β-glucan on postprandial blood glucose and insulin responses: a systematic review and meta-analysis. Eur J Clin Nutr 2021;
- 390
Battilana P,
Ornstein K,
Minehira K.
et al. Mechanisms of action of betaglucan in postprandial glucose metabolism in healthy
men. Eur J Clin Nutr 2001; 55: 327-333
MissingFormLabel
- 391
Jenkins AL,
Jenkins DJA,
Zdravkovic U.
et al. Depression of the glycemic index by high levels of beta-glucan fiber in two
functional foods tested in type 2 diabetes. Eur J Clin Nutr 2002; 56: 622-628
MissingFormLabel