Subscribe to RSS
DOI: 10.1055/a-1626-5749
Synthesis of Nitrile-Functionalized Polydentate N-Heterocycles as Building Blocks for Covalent Triazine Frameworks
This work is supported by the Bijzonder Onderzoeksfonds UGent (Research Board of Ghent University; BOF) through a Concerted Research Action (GOA010-17). J.E. acknowledges the Fonds Wetenschappelijk Onderzoek (Research Foundation – Flanders; FWO) for a PhD Fellowship fundamental research (grant 1180421N). K.V.H. thanks the FWO (projects AUGE/11/029 and G099319N) for funding.
Dedicated to Prof. Alain Krief on the occasion of his 80th birthday
Abstract
Covalent triazine frameworks (CTFs) based on polydentate ligands are highly promising supports to anchor catalytic metal complexes. The modular nature of CTFs allows to tailor the composition, structure, and function to its specific application. Access to a broad range of chelating building blocks is therefore essential. In this respect, we extended the current available set of CTF building blocks with new nitrile-functionalized N-heterocyclic ligands. This paper presents the synthesis of the six ligands which vary in the extent of the aromatic system and the denticity. The new building blocks may help in a rational design of enhanced support materials in catalysis.
Key words
N-heterocycles - 1,4-diazadiene ligands - 2,2′-bipyridine - 2,2′-biquinoline - 2,6-bis(benzimidazolyl)pyridine - nitrile building blocks - covalent triazine frameworksSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1626-5749.
- Supporting Information
Publication History
Received: 09 July 2021
Accepted after revision: 31 August 2021
Accepted Manuscript online:
31 August 2021
Article published online:
13 October 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Constable EC. Coord. Chem. Rev. 1989; 93: 205
- 2 Kaes C, Katz A, Hosseini MW. Chem. Rev. 2000; 100: 3553
- 3 Thompson DW, Ito A, Meyer TJ. Pure Appl. Chem. 2013; 85: 1257
- 4 Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
- 5 Elgrishi N, Chambers MB, Wang X, Fontecave M. Chem. Soc. Rev. 2017; 46: 761
- 6 Tong L, Thummel RP. Chem. Sci. 2016; 7: 6591
- 7 Yuan Y.-J, Yu Z.-T, Chen D.-Q, Zou Z.-G. Chem. Soc. Rev. 2017; 46: 603
- 8 Gao F, Wang Y, Zhang J, Shi D, Wang M, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M. Chem. Commun. 2008; 2635
- 9 Pashaei B, Karimi S, Shahroosvand H, Abbasi P, Pilkington M, Bartolotta A, Fresta E, Fernandez-Cestau J, Costa RD, Bonaccorso F. Chem. Soc. Rev. 2019; 48: 5033
- 10 Monro S, Colón KL, Yin H, Roque J, Konda P, Gujar S, Thummel RP, Lilge L, Cameron CG, McFarland SA. Chem. Rev. 2019; 119: 797
- 11 Swiegers GF, Malefetse TJ. Chem. Rev. 2000; 100: 3483
- 12 Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. Chem. Soc. Rev. 2017; 46: 7706
- 13 Marin V, Holder E, Hoogenboom R, Schubert US. Chem. Soc. Rev. 2007; 36: 618
- 14 Newkome GR, He E, Moorefield CN. Chem. Rev. 1999; 99: 1689
- 15 Waki M, Maegawa Y, Hara K, Goto Y, Shirai S, Yamada Y, Mizoshita N, Tani T, Chun W.-J, Muratsugu S, Tada M, Fukuoka A, Inagaki S. J. Am. Chem. Soc. 2014; 136: 4003
- 16 Manna K, Zhang T, Greene FX, Lin W. J. Am. Chem. Soc. 2015; 137: 2665
- 17 Schubert US, Eschbaumer C. Angew. Chem. Int. Ed. 2002; 41: 2892
- 18 Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed. 2008; 47: 3450
- 19 Liu M, Guo L, Jin S, Tan B. J. Mater. Chem. A 2019; 7: 5153
- 20 Ren S, Bojdys MJ, Dawson R, Laybourn A, Khimyak YZ, Adams DJ, Cooper AI. Adv. Mater. 2012; 24: 2357
- 21 Yang Z, Chen H, Wang S, Guo W, Wang T, Suo X, Jiang D, Zhu X, Popovs I, Dai S. J. Am. Chem. Soc. 2020; 142: 6856
- 22 Liu M, Huang Q, Wang S, Li Z, Li B, Jin S, Tan B. Angew. Chem. Int. Ed. 2018; 57: 11968
- 23 Hug S, Tauchert ME, Li S, Pachmayr UE, Lotsch BV. J. Mater. Chem. 2012; 22: 13956
- 24 Tahir N, Muniz-Miranda F, Everaert J, Tack P, Heugebaert TS. A, Leus K, Vincze L, Stevens CV, Van Speybroeck V, Van Der Voort P. J. Catal. 2019; 371: 135
- 25 Watson G, Gohari Derakhshandeh P, Abednatanzi S, Schmidt J, Leus K, Van Der Voort P. Molecules 2021; 26: 838
- 26 Tahir N, Krishnaraj C, Leus K, Van Der Voort P. Polymers (Basel, Switz.) 2019; 11: 1326
- 27 Abednatanzi S, Gohari Derakhshandeh P, Tack P, Muniz-Miranda F, Liu Y.-Y, Everaert J, Meledina M, Vanden Bussche F, Vincze L, Stevens CV, Van Speybroeck V, Vrielinck H, Callens F, Leus K, Van Der Voort P. Appl. Catal., B 2020; 269: 118769
- 28 Sigma-Aldrich catalogue, [2,2′-bipyridine]-5,5′-dicarbonitrile (accessed Jul 7, 2021): https://www.sigmaaldrich.com/BE/en/product/ambeedinc/ambh324abb8f?context=bbe
- 29 Baxter PN. W, Connor JA. J. Organomet. Chem. 1988; 355: 193
- 30 Janiak C, Deblon S, Wu H.-P. Synth. Commun. 1999; 29: 3341
- 31 Whittle CP. J. Heterocycl. Chem. 1977; 14: 191
- 32 Liao L.-Y, Kong X.-R, Duan X.-F. J. Org. Chem. 2014; 79: 777
- 33 Romero FM, Ziessel R. Tetrahedron Lett. 1995; 36: 6471
- 34 D’Souza DM, Leigh DA, Papmeyer M, Woltering SL. Nat. Protoc. 2012; 7: 2022
- 35 Hayashi E, Shimada N. Yakugaku Zasshi 1977; 97: 123
- 36 Wang H, Pei Y, Bai J, Zhang J, Wu Y, Cui X. RSC Adv. 2014; 4: 26244
- 37 Jha AK, Jain N. Eur. J. Org. Chem. 2017; 2017: 4765
- 38 Quinn JR, Zimmerman SC. J. Org. Chem. 2005; 70: 7459
- 39 Garuti L, Roberti M, Malagoli M, Rossi T, Castelli M. Bioorg. Med. Chem. Lett. 2000; 10: 2193
- 40 Veauthier JM, Carlson CN, Collis GE, Kiplinger JL, John KD. Synthesis 2005; 2683
- 41 Yu P, Morandi B. Angew. Chem. Int. Ed. 2017; 56: 15693