Gesundheitswesen 2021; 83(S 02): S69-S76
DOI: 10.1055/a-1633-3827
Übersichtsarbeit

Nutzung von Sekundärdaten für die pharmakoepidemiologische Forschung – machen wir das Beste draus!

Secondary Data for Pharmacoepidemiological Research – Making the Best of It!
Iris Pigeot
1   Leibniz-Institut für Präventionsforschung und Epidemiologie – BIPS, Abteilung Biometrie und EDV, Bremen, Deutschland
2   Fachbereich Mathematik und Informatik, Universität Bremen, Bremen, Deutschland
,
Bianca Kollhorst
1   Leibniz-Institut für Präventionsforschung und Epidemiologie – BIPS, Abteilung Biometrie und EDV, Bremen, Deutschland
,
Vanessa Didelez
1   Leibniz-Institut für Präventionsforschung und Epidemiologie – BIPS, Abteilung Biometrie und EDV, Bremen, Deutschland
2   Fachbereich Mathematik und Informatik, Universität Bremen, Bremen, Deutschland
› Author Affiliations

Zusammenfassung

In Studien mit Sekundärdaten wie Abrechnungsdaten von Krankenkassen wird man häufig vor methodische Herausforderungen gestellt, die v. a. durch die Zeitabhängigkeit, aber auch durch ungemessenes Confounding entstehen. In diesem Paper stellen wir Strategien vor, um verschiedene Biasquellen zu vermeiden und um den durch ungemessenes Confounding entstehenden Bias abzuschätzen. Wir illustrieren das Prinzip der Targets Trials, marginale Strukturmodelle und instrumentelle Variablen anhand von Studien mit der GePaRD Datenbank. Abschließend werden die Chancen und Limitationen von Record Linkage diskutiert, um fehlende Information in den Daten zu ergänzen.

Abstract

Studies using secondary data such as health care claims data are often faced with methodological challenges due to the time-dependence of key quantities or unmeasured confounding. In the present paper, we discuss approaches to avoid or suitably address various sources of potential bias. In particular, we illustrate the target trial principle, marginal structural models, and instrumental variables with examples from the “GePaRD” database. Finally, we discuss the strengths and limitations of record linkage which can sometimes be used to supply missing information.



Publication History

Article published online:
25 October 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Wilkinson MD, Dumontier M, Aalbersberg IJ. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 2016; 3: 160018
  • 2 Nationale Forschungsdateninfrastruktur (NFDI) e. V. Nationale Forschungsdateninfrastruktur (2021). Im Internet https://www.nfdi.de
  • 3 EOSC Association. European Open Science Cloud (2021). Im Internet https://eosc.eu/
  • 4 Jacobs S, Stallmann C, Pigeot I. Verknüpfung großer Sekundär- und Registerdatenquellen mit Daten aus Kohortenstudien. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2015; 58: 822-828
  • 5 Pigeot I, Ahrens W. Establishment of a pharmacoepidemiological database in Germany: methodological potential, scientific value and practical limitations. Pharmacoepidemiol Drug Saf 2008; 17: 215-223
  • 6 March S, Andrich S, Drepper J. et al. Gute Praxis Datenlinkage (GPD). Gesundheitswesen 2019; 81: 636-650
  • 7 Hernán MA, Sauer BC, Hernández-Díaz S. et al. Specifying a target trial prevents immortal time bias and other self-inflicted injuries in observational analyses. J Clin Epidemiol 2016; 79: 70-75
  • 8 Suissa S. Immortal time bias in pharmacoepidemiology. Am J Epidemiol 2008; 167: 492-499
  • 9 Haque R, Shi J, Schottinger JE. et al. Tamoxifen and antidepressant drug interaction in a cohort of 16,887 breast cancer survivors. J Natl Cancer Inst 2016; 108
  • 10 Institut für Epidemiologie und Sozialmedizin der Universität Münster. ZEBra-MSP Evaluation der Brustkrebsmortalität im deutschen Mammographie-Screening-Programm (2021). Im Internet: https://www.medizin.uni-muenster.de/epi/forschung/projekte/zebra-msp.html
  • 11 Langner I, Riedel O, Czwikla J. et al. Linkage of routine data to other data sources in Germany: a practical example illustrating challenges and solutions. Gesundheitswesen 2020; 82: S117-S121
  • 12 Ray WA. Evaluating medication effects outside of clinical trials: new-user designs. Am J Epidemiol 2003; 158: 915-920
  • 13 García-Albéniz X, Hsu J, Hernán MA. The value of explicitly emulating a target trial when using real world evidence: an application to colorectal cancer screening. Eur J Epidemiol 2017; 32: 495-500
  • 14 Didelez V. Commentary: Should the analysis of observational data always be preceded by specifying a target experimental trial?. Int J Epidemiol 2016; 45: 2049-2051
  • 15 Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol 2016; 183: 758-764
  • 16 Dickerman BA, García-Albéniz X, Logan RW. et al. Emulating a target trial in case-control designs: an application to statins and colorectal cancer. Int J Epidemiol 2020; 49: 1637-1646
  • 17 Hernán MA, Robins JM. Causal inference: what if. Boca Raton: Chapman & Hall/CRC; 2020
  • 18 Witte J, Didelez V. Covariate selection strategies for causal inference: classification and comparison. Biom J 2019; 61: 1270-1289
  • 19 Jackson JW, Schmid I, Stuart EA. Propensity scores in pharmacoepidemiology: beyond the horizon. Curr Epidemiol Rep 2017; 4: 271-280
  • 20 Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med 2009; 28: 3083-3107
  • 21 Enders D, Ohlmeier C, Garbe E. The potential of high-dimensional propensity scores in health services research: an exemplary study on the quality of care for elective percutaneous coronary interventions. Health Serv Res 2018; 53: 197-213
  • 22 Daniel RM, Cousens SN, De Stavola BL. et al. Methods for dealing with time-dependent confounding. Stat Med 2013; 32: 1584-1618
  • 23 Enders D, Engel S, Linder R. et al. Robust versus consistent variance estimators in marginal structural Cox models. Stat Med 2018; 37: 3455-3470
  • 24 Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000; 11: 550-560
  • 25 Young JG, Cain LE, Robins JM. et al. Comparative effectiveness of dynamic treatment regimes: an application of the parametric g-formula. Stat Biosci 2011; 3: 119-143
  • 26 Li X, Young JG, Toh S. Estimating effects of dynamic treatment strategies in pharmacoepidemiologic studies with time-varying confounding: a primer. Curr Epidemiol Rep 2017; 4: 288-297
  • 27 Gran JM, Røysland K, Wolbers M. et al. A sequential Cox approach for estimating the causal effect of treatment in the presence of time-dependent confounding applied to data from the Swiss HIV Cohort Study. Stat Med 2010; 29: 2757-2768
  • 28 Petersen M, Schwab J, Gruber S. et al. Targeted maximum likelihood estimation for dynamic and static longitudinal marginal structural working models. J Causal Inference 2014; 2: 147-185
  • 29 Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol 2018; 47: 358
  • 30 Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res 2007; 16: 309-330
  • 31 Martens EP, Pestman WR, de Boer A. et al. Instrumental variables: application and limitations. Epidemiology 2006; 17: 260-267
  • 32 Kollhorst B, Abrahamowicz M, Pigeot I. The proportion of all previous patients was a potential instrument for patientsʼ actual prescriptions of nonsteroidal anti-inflammatory drugs. J Clin Epidemiol 2016; 69: 96-106
  • 33 Schneeweiss S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol Drug Saf 2006; 15: 291-303
  • 34 VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med 2017; 167: 268-274
  • 35 Greenland S. Multiple-bias modelling for analysis of observational data. J R Stat Soc Ser A Stat Soc 2005; 168: 267-306
  • 36 Dorie V, Harada M, Carnegie NB. et al. A flexible, interpretable framework for assessing sensitivity to unmeasured confounding. Stat Med 2016; 35: 3453-3470
  • 37 Lash TL, Fox MP, Fink AK. Applying quantitative bias analysis to epidemiologic data. 1. Aufl. New York: Springer; 2009.
  • 38 Ahrens W, Greiser KH, Linseisen J. et al. Erforschung von Erkrankungen in der NAKO Gesundheitsstudie. Die wichtigsten gesundheitlichen Endpunkte und ihre Erfassung. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63: 376-384
  • 39 Ohlmeier C, Hoffmann F, Giersiepen K. et al. Verknüpfung von Routinedaten der Gesetzlichen Krankenversicherung mit Daten eines Krankenhausinformationssystems: machbar, aber auch „nützlich“?. Gesundheitswesen 2015; 77: e8-e14
  • 40 Cain KC, Breslow NE. Logistic regression analysis and efficient design for two-stage studies. Am J Epidemiol 1988; 128: 1198-1206
  • 41 Behr S, Schill W, Pigeot I. Does additional confounder information alter the estimated risk of bleeding associated with phenprocoumon use – results of a two-phase study. Pharmacoepidemiol Drug Saf 2012; 21: 535-545