Synthesis 2022; 54(07): 1843-1849
DOI: 10.1055/a-1639-0648
paper

Scalable Total Synthesis of Piceatannol-3′-O-β-d-glucopyranoside and the 4′-Methoxy Congener Thereof: An Early Stage Glycosylation Strategy

Jianfeng Li
a   School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming 650106, P. R. of China
,
Xiaoting Wang
b   Yunnan Shureli Biopharmaceutical Corporation, Ltd., 285 Xinguang Alley, Wuhua District, Kunming, Yunnan, P. R. of China
,
Rong-Ping Zhang
a   School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming 650106, P. R. of China
,
Lei Chen
a   School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming 650106, P. R. of China
› Author Affiliations
Funding for the Project of Supporting the Advanced Scholars in Yunnan­ Province (30271101200).


Abstract

Scalable syntheses of piceatannol-3′-O-β-d-glucopyranoside and the 4′-methoxy congener thereof were achieved. This route features an early implemented Fischer-like glycosylation reaction, a regioselective iodination of phenolic glycoside under strongly acidic conditions, a highly telescoped route to access the styrene derivative, and a key Mizoroki–Heck reaction to render the desired coupled products in high overall yield.

Supporting Information



Publication History

Received: 12 July 2021

Accepted after revision: 07 September 2021

Accepted Manuscript online:
07 September 2021

Article published online:
21 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kashiwada Y, Nonaka G, Nishioka I. Chem. Pharm. Bull. 1984; 32: 3501
  • 2 Kim A, Ma JY. Phytomedicine 2019; 57: 95
  • 3 Ouyang X, Li X, Liu J, Liu Y, Xie Y, Du Z, Xie H, Chen B, Lu W, Chen D. RSC Adv. 2020; 10: 31171
  • 4 Woo A, Shin W, Cuong TD, Min B, Lee JH, Jeon BH, Ryoo S. Int. J. Mol. Med. 2013; 31: 803
  • 5 Muller J, Cardey B, Zedet A, Desingle C, Grzybowski M, Pomper P, Foley S, Harakat D, Ramseyer C, Girard C, Pudlo M. RSC Med. Chem. 2020; 11: 559
  • 6 Abdelkawy KS, Lack K, Elbarbry F. Eur. J. Drug Metabol. Pharmacokinet. 2017; 42: 355
  • 7 Steppan J, Nyhan D, Berkowitz DE. Front. Immunol. 2013; 4: 1
  • 8 Li D, Li R, Li J, Yang Z. CN107200759A, 2017
  • 9 Nicolaou KC, Mitchell HJ, Jain NF, Bando T, Hughes R, Winssinger N, Natarajan S, Koumbis AE. Chem. Eur. J. 1999; 5: 2648
  • 10 Shen R, Laval S, Cao X, Yu B. J. Org. Chem. 2018; 83: 2601
  • 11 Shao X, Wang X, Zhu K, Dang Y, Yu B. J. Org. Chem. 2020; 85: 12080
  • 12 Srinivas C, Blake H, Qian W. Lett. Org. Chem. 2006; 3: 35
  • 13 Mabic S, Lepoittevin J.-P. Tetrahedron Lett. 1995; 36: 1705
  • 14 Heck RF. Org. React. 1982; 27: 345