Synthesis, Table of Contents Synthesis 2022; 54(03): 689-696DOI: 10.1055/a-1643-5729 paper Unified Approach to ent-Eudesmane-Type Terpenoid Synthesis: Total Synthesis of Sinupol and Eutyscoparin A Koichiro Ota ∗ , Kazuo Kamaike , Hiroaki Miyaoka ∗ Recommend Article Abstract Buy Article All articles of this category Abstract ent-Eudesmane-type terpenoids constitute a large class of natural products derived from plants, animals, and bacteria. We describe a synthetic approach to two ent-eudesmane-type terpenoids, sinupol and eutyscoparin A, that relies on a key π-facial- and endo/exo-selective intramolecular Diels–Alder reaction to set the C-5–C-10 stereotriads. Further key transformations of trans-fused decalin include conversion to methyl ketone via a versatile thioester intermediate and appropriate functionalization toward target compounds. Key words Key words ent-eudesmane - sinupol - eutyscoparin A - total synthesis - Diels–Alder reaction - protecting-group-free Full Text References References 1a Fraga BM. Nat. Prod. Rep. 2011; 28: 1580 1b Li W, Chen H.-Q, Wang H, Mei W.-L, Dai H.-F. Nat. Prod. Rep. 2021; 38: 528 1c Rudolf JD, Alsup TA, Xu B, Li Z. Nat. Prod. Rep. 2021; 38: 905 1d Zheng QX, Xu ZJ, Sun XF, Guéritte F, Cesario M, Sun HD, Cheng CH. K, Hao X.-J, Zhao Y. J. Nat. Prod. 2003; 66: 1078 1e Shen Y, Cui S.-J, Chen H, Shen L, Wang M, Dong X, Xiao C.-J, Jiang B. J. Nat. Prod. 2020; 83: 927 2 Wu Q.-X, Shi Y.-P, Jia Z.-J. Nat. Prod. Rep. 2006; 23: 699 3 Ando M, Isogai K, Azami H, Hirata N, Yanagi Y. J. Nat. Prod. 1991; 54: 1017 4a Tsanuo MK, Hassanali A, Jondiko IJ. O, Torto B. Phytochemistry 1993; 34: 665 4b Vera N, Misico R, Sierra MG, Asakawa Y, Bardón A. Phytochemistry 2008; 69: 1689 5a Al-Dabbas MM, Hashinaga F, Abdelgaleil SA. M, Suganuma T, Akiyama K, Hayashi H. J. Ethnopharmacol. 2005; 97: 237 5b Li W, Cai C.-H, Guo Z.-K, Wang H, Zuo W.-J, Dong W.-H, Mei W.-L, Dai H.-F. Fitoterapia 2015; 100: 44 6 Zhang J, Wang Y, Zhu R, Li Y, Li Y, Qiao Y, Zhou J, Lou H. RSC Adv. 2018; 8: 39091 7 Wang X, Peng X, Tang C, Zhou S, Ke C.-Q, Liu Y, Yao S, Ai J, Ye Y. J. Nat. Prod. 2021; 84: 1626 8 Zhang J.-Z, Qiao Y.-N, Lin L, Wang Y.-J, Li Y, Fei X, Zhou J.-C, Wang X, Fan P.-H, Lou H.-X. Planta Med. 2016; 82: 1128 9 Isaka M, Palasarn S, Lapanun S, Chanthaket R, Boonyuen N, Lumyong S. J. Nat. Prod. 2009; 72: 1720 10 Kanemasa T, Kagawa K. Japan Kokai Tokkyo Koho JP08198745, 1999 11 Ye F, Zhu Z.-D, Gu Y.-C, Li J, Zhu W.-L, Guo Y.-W. Mar. Drugs 2018; 16: 103 12a Kenner KA, Anyanwu E, Olefsky JM, Kusari J. J. Biol. Chem. 1996; 271: 19810 12b Chen H, Wertheimer SJ, Lin CH, Katz SL, Amrein KE, Burn P, Quon MJ. J. Biol. Chem. 1997; 272: 8026 12c Ahmad F, Li PM, Meyerovitch J, Goldstein BJ. J. Biol. Chem. 1995; 270: 20503 12d Chen H, Cong LN, Li Y, Yao ZJ, Wu L, Zhang ZY, Burke TR. Jr, Quon MJ. Biochemistry 1999; 38: 384 12e Walchli S, Curchod ML, Gobert RP, Arkinstall S, Hooft van Huijsduijnen R. J. Biol. Chem. 2000; 275: 9792 12f Panzhinskiy E, Ren J, Nair S. Curr. Med. Chem. 2013; 20: 2609 13 Ota K, Kamaike K, Miyaoka H. Synlett 2020; 31: 1007 14 Zhang W, Lu X, Huo L, Zhang S, Chen Y, Zou Z, Tan H. J. Nat. Prod. 2021; 84: 1715 15a Evans DA, Ennis MD, Mathre DJ. J. Am. Chem. Soc. 1982; 104: 1737 15b Bradbury RH, Revill JM, Rivett JE, Waterson D. Tetrahedron Lett. 1989; 30: 3845 15c Carter RG, Weldon DJ. Org. Lett. 2000; 2: 3913 15d Nazari A, Heravi MM, Zadsirjan V. J. Organomet. Chem. 2021; 932: 121629 16 Kriening S, Evagelou A, Claasen B, Baro A, Laschat S. Eur. J. Org. Chem. 2014; 6720 17 Yildizhan S, Schulz S. Synlett 2011; 2831 18 Aoyama Y, Araki Y, Konoike T. Synlett 2001; 1452 19 Miyazaki T, Han-ya Y, Tokuyama H, Fukuyama T. Synlett 2004; 477 20 Wiest JM, Conner ML, Brown MK. J. Am. Chem. Soc. 2018; 140: 15943 21 Toyota M, Yonehara Y, Horibe I, Minagawa K, Asakawa Y. Phytochemistry 1999; 52: 689 22 CCDC 2095167 contains the supplementary crystallographic data for compound 10. The data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/structures 23 White JD, Carter RG, Sundermann KF. J. Org. Chem. 1999; 64: 684 24 Kosugi H, Yamabe O, Kato M. J. Chem. Soc., Perkin Trans. 1 1998; 217 25 Comparison of the 13C NMR spectra of synthetic 1 and natural sinupol11 showed a difference in the chemical shift for C-4. Since the signal of C-4 is close to the solvent signal, it seems reasonable to assume that this signal might have been overlooked (see also Supporting Information). Although we could not obtain the spectrum of sinupol reported by Guo et al.,11 we are confident that the reported chemical shift for C-4 is a typographical error, given that all the other 13C NMR chemical shifts of synthetic 1 and natural sinupol are essentially identical. 26 Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 5370 Supplementary Material Supplementary Material Supporting Information