RSS-Feed abonnieren
DOI: 10.1055/a-1643-8526
Enantioselective Transfer Hydrogenation of Oxocarbenium Ions Enables Asymmetric Access to α-Substituted 1,3-Dihydroisobenzofurans
This work was financially supported by the Postdoctoral Innovation Project of Shandong Province (No. 202001003), the National Science Foundation of China (No. 21801093), and China Postdoctoral Science Foundation (No. 2019M662321).

Abstract
Reported here is an efficient enantioselective transfer hydrogenation of cyclic oxocarbenium ions generated in situ through collapse of the corresponding acetal substrates. The asymmetric approach provides straightforward access to a variety of chiral α-aryl substituted 1,3-dihydroisobenzofurans in high yields with excellent enantioselectivities. α-Alkynyl substituted 1,3-dihydroisobenzofurans were also proved to be suitable substrates. In addition, when the reaction was performed at gram scale, the desired product was obtained in good yields with excellent enantioselectivity.
Key words
enantioselectivity - transfer hydrogenation - oxocarbenium ions - α-substituted 1,3-dihydroisobenzofurans - asymmetric catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1643-8526.
- Supporting Information
Publikationsverlauf
Eingereicht: 22. Juli 2021
Angenommen nach Revision: 17. August 2021
Accepted Manuscript online:
13. September 2021
Artikel online veröffentlicht:
17. September 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA. Jr, Tomer DP, Oneill KL, Heider EM, Grant DM. Tetrahedron 2003; 59: 2471
- 1b Sindrup SH, Bjerre U, Dejgaard A, Brøsen K, Aaes-Jørgensen T, Gram LF. Clin. Pharmacol. Ther. 1992; 52: 547
- 1c Keller MB. J. Clin. Psychiatry 2000; 61: 896
- 1d Vedantham R, Vetukuri PR, Boini A, Khagga M, Bandichhor R. Org. Process Res. Dev. 2013; 17: 798
- 1e Hewitt JF. M, Williams L, Aggarwal P, Smith CD, France DJ. Chem. Sci. 2013; 4: 3538
- 1f Bueno AB, Gilmore J, Boot J, Broadmore R, Cooper J, Findlay J, Hayhurst L, Marcos A, Montero C, Mitchell S, Timms G, Tomlinson R, Wallace L, Walton L. Bioorg. Med. Chem. Lett. 2007; 17: 3344
- 2a Gabriele B, Salerno G, Fazio A, Pittelli R. Tetrahedron 2003; 59: 6251
- 2b Della Ca’ N, Campanini F, Gabriele B, Salerno G, Massera C, Costa M. Adv. Synth. Catal. 2009; 351: 2423
- 2c Mancuso R, Mehta S, Gabriele B, Salerno G, Jenks WS, Larock RC. J. Org. Chem. 2010; 75: 897
- 2d Sekine K, Takayanagi A, Kikuchi S, Yamada T. Chem. Commun. 2013; 49: 11320
- 2e Shen H, Fu J, Gong J, Yang Z. Org. Lett. 2014; 16: 5588
- 2f Zhang W.-Z, Yang M.-W, Yang X.-T, Shi L.-L, Wang H.-B, Lu X.-B. Org. Chem. Front. 2016; 3: 217
- 2g Liu S, Chen K, Hao W.-J, Tu X.-C, Tu S.-J, Jiang B. J. Org. Chem. 2019; 84: 1964
- 3a Čorić I, Kim JH, Vlaar T, Patil M, Thiel W, List B. Angew. Chem. Int. Ed. 2013; 52: 3490
- 3b Ravindra B, Das BG, Ghorai P. Org. Lett. 2014; 16: 5580
- 3c Chen D, Chemler SR. Org. Lett. 2018; 20: 6453
- 3d Chen D, Berhane IA, Chemler SR. Org. Lett. 2020; 22: 7409
- 4 Weldy NM, Schafer AG, Owens CP, Herting CJ, Varela-Alvarez A, Chen S, Niemeyer Z, Musaev DG, Sigman MS, Davies HM. L, Blakey SB. Chem. Sci. 2016; 7: 3142
- 5a Sun S, Ma Y, Liu Z, Liu L. Angew. Chem. Int. Ed. 2021; 60: 176
- 5b Sun S, Yang Y, Zhao R, Zhang D, Liu L. J. Am. Chem. Soc. 2020; 142: 19346
- 6a Kuznetsov E.-V, Shcherbakova I.-V, Balaban A.-T. Adv. Heterocycl. Chem. 1990; 50: 157
- 6b Asao N, Takahashi K, Lee S, Kasahara T, Yamamoto Y. J. Am. Chem. Soc. 2002; 124: 12650
- 6c Asao N, Takahashi K, Yamamoto Y. Angew. Chem. Int. Ed. 2003; 42: 3504
- 6d Zhu J, Germain AR, Porco JA. Jr. Angew. Chem. Int. Ed. 2004; 43: 1239
- 6e Kusama H, Funami H, Shido M, Hara Y, Takaya J, Iwasawa N. J. Am. Chem. Soc. 2005; 127: 2709
- 6f Hsu Y.-C, Ting C.-M, Liu R.-S. J. Am. Chem. Soc. 2009; 131: 2090
- 6g Hu Z.-L, Yang Z.-Y, Wang S, Yao Z.-J. Chem. Eur. J. 2011; 17: 1268
- 6h Guo B, Zhou Y, Zhang L, Hua R. J. Org. Chem. 2015; 80: 7635
- 6i Meng Z, Sun S, Yuan H, Lou H, Liu L. Angew. Chem. Int. Ed. 2014; 53: 543
- 7 Reisman SE, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 7198
- 8a Lu C, Su X, Floreancig PE. J. Org. Chem. 2013; 78: 9366
- 8b Watson MP, Maity P. Synlett 2012; 23: 1705
- 8c Rueping M, Volla CM. R, Atodiresei I. Org. Lett. 2012; 14: 4642
- 8d Terada M, Tanaka H, Sorimachi K. J. Am. Chem. Soc. 2009; 131: 3430
- 9a Dasgupta S, Rivas T, Watson MP. Angew. Chem. Int. Ed. 2015; 54: 14154
- 9b Haidzinskaya T, Kerchner HA, Liu J, Watson MP. Org. Lett. 2015; 17: 3857
- 9c Maity P, Srinivas HD, Watson MP. J. Am. Chem. Soc. 2011; 133: 17142
- 10a Saito K, Kajiwara Y, Akiyama T. Angew. Chem. Int. Ed. 2013; 52: 13284
- 10b Terada M, Li F, Toda Y. Angew. Chem. Int. Ed. 2014; 53: 235
- 10c Hsiao C.-C, Liao H.-H, Sugiono E, Atodiresei I, Rueping M. Chem. Eur. J. 2013; 19: 9775
- 10d Wan M, Sun S, Li Y, Liu L. Angew. Chem. Int. Ed. 2017; 56: 5116
- 10e Miao T, Tian Z.-Y, He Y.-M, Chen F, Chen Y, Yu Z.-X, Fan Q.-H. Angew. Chem. Int. Ed. 2017; 56: 4135
- 10f Yang T, Sun Y, Wang H, Lin Z, Wen J, Zhang X. Angew. Chem. Int. Ed. 2020; 59: 6108
- 11a Chen J.-R, Hu X.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2014; 53: 4038
- 11b Hojo D, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2009; 48: 8129
- 11c Ishida K, Kusama H, Iwasawa N. J. Am. Chem. Soc. 2010; 132: 8842
- 11d Handa S, Slaughter LM. Angew. Chem. Int. Ed. 2012; 51: 2912
- 11e Yu S.-Y, Zhang H, Gao Y, Mo L, Wang S, Yao Z.-J. J. Am. Chem. Soc. 2013; 135: 11402
- 11f Terada M, Toda Y. Angew. Chem. Int. Ed. 2012; 51: 2093
- 11g Qian H, Zhao W.-X, Wang Z.-B, Sun J.-W. J. Am. Chem. Soc. 2015; 137: 560
- 12a Lee S, Kaib PS. J, List B. J. Am. Chem. Soc. 2017; 139: 2156
- 12b Zhao C, Chen SB, Seidel D. J. Am. Chem. Soc. 2016; 138: 9053
- 13 Chen X, Zhao R, Liu Z, Sun S, Ma Y, Liu Q, Sun X, Liu L. Chin. Chem. Lett. 2021; 32: 2305