Z Orthop Unfall 2022; 160(06): 657-669
DOI: 10.1055/a-1647-3914
Originalarbeit

Why Insufficiency Fractures are Rarely Found in the Cervical Spine, Even with Osteoporosis

Article in several languages: deutsch | English
1   Klinik für Orthopädie und Unfallchirurgie, Warnow Klinik, Bützow, Deutschland
,
Laura Hiepe
2   Institut für Anatomie, Universitätsmedizin Rostock, Rostock, Deutschland
,
Mario Moritz
3   Klinik für Innere Medizin, Warnow Klinik, Bützow, Germany
,
Laura-Marie Vivell
4   Medizinische Fakultät, Universität Rostock, Rostock, Deutschland
,
Marko Schulze
5   Institut für Anatomie und Zellbiologie, Universität Bielefeld, Bielefeld, Deutschland
,
Heiner Martin
6   Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Rostock, Deutschland
,
Andreas Götz
6   Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Rostock, Deutschland
,
Julian Ramin Andresen
7   Medizinische Fakultät, Sigmund Freud Privat Universität Wien, Wien, Österreich
,
Claus-Maximilian Kullen
8   Institut für Diagnostische und Interventionelle Radiologie/Neuroradiologie, Westküstenklinikum Heide, Akademisches Lehrkrankenhaus der Universitäten Kiel, Lübeck und Hamburg, Heide, Deutschland
,
Reimer Andresen
8   Institut für Diagnostische und Interventionelle Radiologie/Neuroradiologie, Westküstenklinikum Heide, Akademisches Lehrkrankenhaus der Universitäten Kiel, Lübeck und Hamburg, Heide, Deutschland
,
Hans-Christof Schober
9   Klinik für Innere Medizin IV, Klinikum Südstadt Rostock, Akademisches Lehrkrankenhaus der Universität Rostock, Rostock, Deutschland
› Author Affiliations

Abstract

Introduction The human bone structure changes with an increase in age. Both material and structural properties affect bone strength. Despite the ageing of society, however, hardly any data are available on these parameters for elderly individuals. Therefore, in the present study, cancellous bone cylinders were taken from the center of each vertebral body (C3 to L5) and examined with regard to bone volume fraction, trabecular thickness, separation, number of trabeculae, cross-linking, connectivity density and degree of anisotropy.

Material and Methods Samples were obtained from 440 body donors using a Jamshidi needle and analysed using microcomputed tomography. Existing deformities, fractures and bone mineral density of each vertebra were recorded by quantitative computed tomography.

Results With regard to the microcomputed tomography parameters, statistically significant differences were found between the different sections of the vertebrae: the trabeculae of the cervical vertebrae were significantly thicker and more closely spaced than in the thoracic and lumbar vertebrae. The bone volume fraction was significantly higher in this spinal segment, as was the connection density and the number of trabeculae and cross-links. In addition, the degree of anisotropy was significantly lower in the cervical vertebrae than in the other spinal segments. With regard to quantitative computed tomography, there was a significantly higher bone mineral density in the cervical vertebrae.

Conclusion Even with osteoporosis, cervical vertebrae fracture significantly later than thoracic and lumbar vertebrae due to their unique microarchitecture and higher density. Thus, the cervical vertebrae has specific properties.



Publication History

Received: 17 May 2021

Accepted after revision: 15 September 2021

Article published online:
22 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Waterloo S, Ahmed LA, Center JR. et al. Prevalence of vertebral fractures in women and men in the population-based Tromsø Study. BMC Musculoskelet Disord 2012; 13: 3
  • 2 Ea H-K, Weber A-J, Yon F. et al. Osteoporotic fracture of the dens revealed by cervical manipulation. Joint Bone Spine 2004; 71: 246-250
  • 3 Ostrowski C, Ronan L, Sheridan R. et al. An osteoporotic fracture mimicking cervical dystonia in idiopathic Parkinson’s disease. Age Ageing 2013; 42: 658-659
  • 4 Ryan MD, Taylor TK. Odontoid fractures in the elderly. J Spinal Disord 1993; 6: 397-401
  • 5 Müller EJ, Wick M, Russe O. et al. Management of odontoid fractures in the elderly. Eur Spine J 1999; 8: 360-365
  • 6 Amling M, Wening VJ, Posl M. et al. Die Struktur des Axis – Schlüssel zur Struktur der Densfraktur. Chirurgie 1994; 65: 964-969
  • 7 Grote HJ, Amling M, Vogel M. et al. Intervertebral variation in trabecular microarchitecture throughout the normal spine in relation to age. Bone 1995; 16: 301-308
  • 8 Gebauer M, Barvencik F, Beil FT. et al. Subdental synchondrosis. Computed tomographic and histologic investigation on morphological aspects of fracture at the base of the dens in 36 human axis specimens. Unfallchirurg 2007; 110: 97-103
  • 9 Gebauer M, Lohse C, Barvencik F. et al. Subdental synchondrosis and anatomy of the axis in aging. A histomorphometric study on 30 autopsy cases. Eur Spine J 2006; 15: 292-298
  • 10 Schröder G, Jabke B, Schulze M. et al. A comparison, using X-ray micro-computed tomography, of the architecture of cancellous bone from the cervical, thoracic and lumbar spine using 240 vertebral bodies from 10 body donors. Anat Cell Biol 2021; 54: 25-34
  • 11 Andresen R, Radmer S, Banzer D. et al. The quantitative determination of bone mineral content—a system comparison of similarly built computed tomographs. Rofo 1994; 160: 260-265
  • 12 Genant HK, Wu CY, van Kuijk C. et al. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 1993; 8: 1137-1148
  • 13 Engelke K, Adams JE, Armbrecht G. et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults. The 2007 ISCD Official Positions. J Clin Densitom 2008; 11: 123-162
  • 14 Andresen R, Radmer S, Banzer D. Bone mineral density and spongiosa architecture in correlation to vertebral body insufficiency fractures. Acta Radiol 1998; 39: 538-542
  • 15 de Laet C, Kanis JA, Odén A. et al. Body mass index as a predictor of fracture risk. A meta-analysis. Osteoporos Int 2005; 16: 1330-1338
  • 16 Schober H-C, Kasch K, Schröder G. Osteoporose bei/durch Adipositas – Schutz oder Risiko? Adipositas – Ursachen, Folgeerkrankungen. Therapie 2021; 15: 77-81
  • 17 Lacombe J, Cairns BJ, Green J. et al. The Effects of Age, Adiposity, and Physical Activity on the Risk of Seven Site-Specific Fractures in Postmenopausal Women. J Bone Miner Res 2016; 31: 1559-1568
  • 18 Thomasius F, Baum E, Bernecker P. et al. S-3 DVO Guidelines 2017 in prophylaxis, diagnosis and therapy of osteoporosis in postmenopausal women and men. Osteologie 2018; 27: 154-160
  • 19 Bässgen K, Westphal T, Haar P. et al. Population-based prospective study on the incidence of osteoporosis-associated fractures in a German population of 200,413 inhabitants. J Public Health (Oxf) 2013; 35: 255-261
  • 20 Volpi E, Campbell WW, Dwyer JT. et al. Is the Optimal Level of Protein Intake for Older Adults Greater Than the Recommended Dietary Allowance?. J Gerontol A Biol Sci Med Sci 2013; 68: 677-681
  • 21 Lips P, Hosking D, Lippunder K. et al. The prevalence of vitamin D inadequacy amongst women with osteoporosis. An international epidemiological investigation. J Intern Med 2006; 260: 245-254
  • 22 Banzer D, Fabian C, Andresen R. et al. Bone density of spongiosa and cortical bone of the lumbar spine. Relations to sex, age and spinal deformities in a regional collective of the European Study of Vertebral Osteoporosis (EVOS). Med Klin 1998; 93: 56-65
  • 23 Möller G, Andresen R, Banzer D. Shape model-based semi-automatic morphometric assessment of vertebral deformities in clinical practice. Osteologie 2011; 20: 239-247
  • 24 Schröder G, Wendig D, Jabke B. et al. Vergleich der Spongiosamorphologie aus humaner Halswirbelsäule (HWS), Brustwirbelsäule (BWS) und Lendenwirbelsäule (LWS) einer 102-jährigen Körperspenderin. Osteologie 2019; 28: 283-288
  • 25 Chen H, Shoumura S, Emura S. et al. Regional variations of vertebral trabecular bone microstructure with age and gender. Osteoporos Int 2008; 19: 1473-1483
  • 26 Gong H, Zhang M, Yeung HY. et al. Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metab 2005; 23: 174-180
  • 27 Banse X, Devogelaer JP, Munting E. et al. Inhomogeneity of human vertebral cancellous bone. Systematic density and structure patterns inside the vertebral body. Bone 2001; 28: 563-571
  • 28 Chen H, Zhou X, Fujita H. et al. Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol 2013; 2013: 213234
  • 29 Follet H, Farlay D, Bala Y. et al. Determinants of microdamage in elderly human vertebral trabecular bone. PLoS One 2013; 8: e55232
  • 30 McDonnell P, McHugh PE, O’Mahoney D. Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng 2007; 35: 170-189
  • 31 Mosekilde L. Age-related changes in vertebral trabecular bone architecture—assessed by a new method. Bone 1988; 9: 247-250
  • 32 Schreiber JJ, Anderson PA, Rosas HG. et al. Hounsfield Units for Assessing Bone Mineral Density and Strength. A Tool for Osteoporosis Management. J Bone Joint Surg Am 2011; 93: 1057-1063
  • 33 Bühren V, Josten C. Chirurgie der verletzten Wirbelsäule. Frakturen, Instabilitäten, Deformitäten. Berlin, Heidelberg: Springer; 2013
  • 34 Benzel EC. Biomechanically relevant anatomy and material properties of the spine and associated elements. In: Benzel EC. Biomechanics of spine stabilization. New York: Mc Graw Hill; 1995: 2-3
  • 35 Duval-Beaupère G, Robain G. Visualization on full spine radiographs of the anatomical connections of the centres of the segmental body mass supported by each vertebra and measured in vivo. Int Orthop 1987; 11: 261-269
  • 36 Kayser R, Beyer L. Repetitorium Manuelle Medizin/Chirotherapie. Berlin, Heidelberg: Springer Berlin Heidelberg; 2017
  • 37 White AA, Panjabi MM. Clinical biomechanics of the spine. 2nd. Philadelphia, Pa.: Lippincott; 1990
  • 38 Crilly RG, Cox L. A comparison of bone density and bone morphology between patients presenting with hip fractures, spinal fractures or a combination of the two. BMC Musculoskelet Disord 2013; 14: 68
  • 39 Christiansen BA, Bouxsein ML. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep 2010; 8: 198-204
  • 40 Intolo P, Milosavljevic S, Baxter DG. et al. The effect of age on lumbar range of motion. A systematic review. Man Ther 2009; 14: 596-604
  • 41 Blattert TR, Schnake KJ, Gonschorek O. et al. Nonsurgical and Surgical Management of Osteoporotic Vertebral Body Fractures. Recommendations of the Spine Section of the German Society for Orthopaedics and Trauma (DGOU). Global Spine J 2018; 8: 50S-55S